Multi-output incremental back-propagation
Deep learning techniques can form generalized models that can solve any problem that is not solvable by traditional approaches. It explains the omnipresence of deep learning models across all domains. However, a lot of time is spent on finding the optimal hyperparameters to help the model generalize...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2023-07, Vol.35 (20), p.14897-14910 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14910 |
---|---|
container_issue | 20 |
container_start_page | 14897 |
container_title | Neural computing & applications |
container_volume | 35 |
creator | Chaudhari, Rachana Agarwal, Dhwani Ravishankar, Kritika Masand, Nikita Sambhe, Vijay K. Udmale, Sandeep S. |
description | Deep learning techniques can form generalized models that can solve any problem that is not solvable by traditional approaches. It explains the omnipresence of deep learning models across all domains. However, a lot of time is spent on finding the optimal hyperparameters to help the model generalize and give the highest accuracy. This paper investigates a proposed model incorporating hybrid layers and a novel approach for weight initialization aimed at—(1) Reducing the overall trial and error time spent in finding the optimal number of layers by providing the necessary insights. (2) Reducing the randomness in weight initialization with the help of a novel incremental backpropagation based model architecture. The model, along with the principal component analysis-based initialization, substantially provides a stable weight initialization, thereby improving the train and test performance and speeding up the process of convergence to an optimal solution. Furthermore, three data sets were tested on the proposed approach, and they outperformed the state-of-the-art initialization methods. |
doi_str_mv | 10.1007/s00521-023-08490-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821740925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821740925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c7857d61de76110b748c6d1ff54d887e2d8077f7e90301dac32e18c58543bb9d3</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjB6hWoqIwzPgROyVa8ZIW0UBtObazyrKbBNsp-HsMQaKjmmLuuVc6hFwgXCOAukkAkiEFxiloUQMVB2SBgnPKQepDsoBalHcl-DE5SWkLAKLSckGunqdd7ugw5XHKy653MexDn-1u2Vj3Tsc4jHZjczf0Z-SotbsUzn_vKXm7v3tdPdL1y8PT6nZNHcc6U6e0VL5CH1SFCI0S2lUe21YKr7UKzGtQqlWhBg7oreMsoHZSS8Gbpvb8lFzOvWX7Ywopm-0wxb5MGqYZKgE1kyXF5pSLQ0oxtGaM3d7GT4NgvpWYWYkpSsyPEiMKxGcolXC_CfGv-h_qC9C-YoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821740925</pqid></control><display><type>article</type><title>Multi-output incremental back-propagation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chaudhari, Rachana ; Agarwal, Dhwani ; Ravishankar, Kritika ; Masand, Nikita ; Sambhe, Vijay K. ; Udmale, Sandeep S.</creator><creatorcontrib>Chaudhari, Rachana ; Agarwal, Dhwani ; Ravishankar, Kritika ; Masand, Nikita ; Sambhe, Vijay K. ; Udmale, Sandeep S.</creatorcontrib><description>Deep learning techniques can form generalized models that can solve any problem that is not solvable by traditional approaches. It explains the omnipresence of deep learning models across all domains. However, a lot of time is spent on finding the optimal hyperparameters to help the model generalize and give the highest accuracy. This paper investigates a proposed model incorporating hybrid layers and a novel approach for weight initialization aimed at—(1) Reducing the overall trial and error time spent in finding the optimal number of layers by providing the necessary insights. (2) Reducing the randomness in weight initialization with the help of a novel incremental backpropagation based model architecture. The model, along with the principal component analysis-based initialization, substantially provides a stable weight initialization, thereby improving the train and test performance and speeding up the process of convergence to an optimal solution. Furthermore, three data sets were tested on the proposed approach, and they outperformed the state-of-the-art initialization methods.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-023-08490-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Back propagation ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Deep learning ; Image Processing and Computer Vision ; Original Article ; Principal components analysis ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing & applications, 2023-07, Vol.35 (20), p.14897-14910</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c7857d61de76110b748c6d1ff54d887e2d8077f7e90301dac32e18c58543bb9d3</citedby><cites>FETCH-LOGICAL-c319t-c7857d61de76110b748c6d1ff54d887e2d8077f7e90301dac32e18c58543bb9d3</cites><orcidid>0000-0001-9498-1230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-023-08490-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-023-08490-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chaudhari, Rachana</creatorcontrib><creatorcontrib>Agarwal, Dhwani</creatorcontrib><creatorcontrib>Ravishankar, Kritika</creatorcontrib><creatorcontrib>Masand, Nikita</creatorcontrib><creatorcontrib>Sambhe, Vijay K.</creatorcontrib><creatorcontrib>Udmale, Sandeep S.</creatorcontrib><title>Multi-output incremental back-propagation</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Deep learning techniques can form generalized models that can solve any problem that is not solvable by traditional approaches. It explains the omnipresence of deep learning models across all domains. However, a lot of time is spent on finding the optimal hyperparameters to help the model generalize and give the highest accuracy. This paper investigates a proposed model incorporating hybrid layers and a novel approach for weight initialization aimed at—(1) Reducing the overall trial and error time spent in finding the optimal number of layers by providing the necessary insights. (2) Reducing the randomness in weight initialization with the help of a novel incremental backpropagation based model architecture. The model, along with the principal component analysis-based initialization, substantially provides a stable weight initialization, thereby improving the train and test performance and speeding up the process of convergence to an optimal solution. Furthermore, three data sets were tested on the proposed approach, and they outperformed the state-of-the-art initialization methods.</description><subject>Artificial Intelligence</subject><subject>Back propagation</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Principal components analysis</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kLtOxDAQRS0EEsvjB6hWoqIwzPgROyVa8ZIW0UBtObazyrKbBNsp-HsMQaKjmmLuuVc6hFwgXCOAukkAkiEFxiloUQMVB2SBgnPKQepDsoBalHcl-DE5SWkLAKLSckGunqdd7ugw5XHKy653MexDn-1u2Vj3Tsc4jHZjczf0Z-SotbsUzn_vKXm7v3tdPdL1y8PT6nZNHcc6U6e0VL5CH1SFCI0S2lUe21YKr7UKzGtQqlWhBg7oreMsoHZSS8Gbpvb8lFzOvWX7Ywopm-0wxb5MGqYZKgE1kyXF5pSLQ0oxtGaM3d7GT4NgvpWYWYkpSsyPEiMKxGcolXC_CfGv-h_qC9C-YoA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Chaudhari, Rachana</creator><creator>Agarwal, Dhwani</creator><creator>Ravishankar, Kritika</creator><creator>Masand, Nikita</creator><creator>Sambhe, Vijay K.</creator><creator>Udmale, Sandeep S.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9498-1230</orcidid></search><sort><creationdate>20230701</creationdate><title>Multi-output incremental back-propagation</title><author>Chaudhari, Rachana ; Agarwal, Dhwani ; Ravishankar, Kritika ; Masand, Nikita ; Sambhe, Vijay K. ; Udmale, Sandeep S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c7857d61de76110b748c6d1ff54d887e2d8077f7e90301dac32e18c58543bb9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Back propagation</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Principal components analysis</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhari, Rachana</creatorcontrib><creatorcontrib>Agarwal, Dhwani</creatorcontrib><creatorcontrib>Ravishankar, Kritika</creatorcontrib><creatorcontrib>Masand, Nikita</creatorcontrib><creatorcontrib>Sambhe, Vijay K.</creatorcontrib><creatorcontrib>Udmale, Sandeep S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhari, Rachana</au><au>Agarwal, Dhwani</au><au>Ravishankar, Kritika</au><au>Masand, Nikita</au><au>Sambhe, Vijay K.</au><au>Udmale, Sandeep S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-output incremental back-propagation</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>20</issue><spage>14897</spage><epage>14910</epage><pages>14897-14910</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Deep learning techniques can form generalized models that can solve any problem that is not solvable by traditional approaches. It explains the omnipresence of deep learning models across all domains. However, a lot of time is spent on finding the optimal hyperparameters to help the model generalize and give the highest accuracy. This paper investigates a proposed model incorporating hybrid layers and a novel approach for weight initialization aimed at—(1) Reducing the overall trial and error time spent in finding the optimal number of layers by providing the necessary insights. (2) Reducing the randomness in weight initialization with the help of a novel incremental backpropagation based model architecture. The model, along with the principal component analysis-based initialization, substantially provides a stable weight initialization, thereby improving the train and test performance and speeding up the process of convergence to an optimal solution. Furthermore, three data sets were tested on the proposed approach, and they outperformed the state-of-the-art initialization methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-023-08490-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9498-1230</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2023-07, Vol.35 (20), p.14897-14910 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2821740925 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Back propagation Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Deep learning Image Processing and Computer Vision Original Article Principal components analysis Probability and Statistics in Computer Science |
title | Multi-output incremental back-propagation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-output%20incremental%20back-propagation&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Chaudhari,%20Rachana&rft.date=2023-07-01&rft.volume=35&rft.issue=20&rft.spage=14897&rft.epage=14910&rft.pages=14897-14910&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-023-08490-4&rft_dat=%3Cproquest_cross%3E2821740925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821740925&rft_id=info:pmid/&rfr_iscdi=true |