A categorical view on the converse Lyapunov theorem
In 1892, Lyapunov provided a fundamental contribution to stability theory by introducing so-called Lyapunov functions and Lyapunov equilibria. He subsequently showed that, for linear systems, the two concepts are equivalent. These concepts have since been extended to diverse types of dynamical syste...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mattenet, Sébastien Maurice Jungers, Raphael |
description | In 1892, Lyapunov provided a fundamental contribution to stability theory by introducing so-called Lyapunov functions and Lyapunov equilibria. He subsequently showed that, for linear systems, the two concepts are equivalent. These concepts have since been extended to diverse types of dynamical systems, and in all settings the equivalence remains valid. However, this involves an often technical proof in each new setting where the concepts are introduced. In this article, we investigate a categorical framework where these results can be unified, exposing a single underlying reason for the equivalence to hold in all cases. First we define what is a dynamical system. Then we introduce the notion of a level-set morphism, which in turn allows us to define the concepts of a Lyapunov equilibrium and a Lyapunov function in a categorical setting. We conclude by a proof of their equivalence. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2821739825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821739825</sourcerecordid><originalsourceid>FETCH-proquest_journals_28217398253</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdlRITixJTc8vykxOzFEoy0wtV8jPUyjJSFVIzs8rSy0qTlXwqUwsKM3LLwOJ5hel5vIwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhZGhubGlhZGpMXGqABDbNEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821739825</pqid></control><display><type>article</type><title>A categorical view on the converse Lyapunov theorem</title><source>Free E- Journals</source><creator>Mattenet, Sébastien Maurice ; Jungers, Raphael</creator><creatorcontrib>Mattenet, Sébastien Maurice ; Jungers, Raphael</creatorcontrib><description>In 1892, Lyapunov provided a fundamental contribution to stability theory by introducing so-called Lyapunov functions and Lyapunov equilibria. He subsequently showed that, for linear systems, the two concepts are equivalent. These concepts have since been extended to diverse types of dynamical systems, and in all settings the equivalence remains valid. However, this involves an often technical proof in each new setting where the concepts are introduced. In this article, we investigate a categorical framework where these results can be unified, exposing a single underlying reason for the equivalence to hold in all cases. First we define what is a dynamical system. Then we introduce the notion of a level-set morphism, which in turn allows us to define the concepts of a Lyapunov equilibrium and a Lyapunov function in a categorical setting. We conclude by a proof of their equivalence.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dynamical systems ; Equivalence ; Liapunov functions ; Linear systems</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Mattenet, Sébastien Maurice</creatorcontrib><creatorcontrib>Jungers, Raphael</creatorcontrib><title>A categorical view on the converse Lyapunov theorem</title><title>arXiv.org</title><description>In 1892, Lyapunov provided a fundamental contribution to stability theory by introducing so-called Lyapunov functions and Lyapunov equilibria. He subsequently showed that, for linear systems, the two concepts are equivalent. These concepts have since been extended to diverse types of dynamical systems, and in all settings the equivalence remains valid. However, this involves an often technical proof in each new setting where the concepts are introduced. In this article, we investigate a categorical framework where these results can be unified, exposing a single underlying reason for the equivalence to hold in all cases. First we define what is a dynamical system. Then we introduce the notion of a level-set morphism, which in turn allows us to define the concepts of a Lyapunov equilibrium and a Lyapunov function in a categorical setting. We conclude by a proof of their equivalence.</description><subject>Dynamical systems</subject><subject>Equivalence</subject><subject>Liapunov functions</subject><subject>Linear systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdlRITixJTc8vykxOzFEoy0wtV8jPUyjJSFVIzs8rSy0qTlXwqUwsKM3LLwOJ5hel5vIwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhZGhubGlhZGpMXGqABDbNEU</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Mattenet, Sébastien Maurice</creator><creator>Jungers, Raphael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230601</creationdate><title>A categorical view on the converse Lyapunov theorem</title><author>Mattenet, Sébastien Maurice ; Jungers, Raphael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28217398253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dynamical systems</topic><topic>Equivalence</topic><topic>Liapunov functions</topic><topic>Linear systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Mattenet, Sébastien Maurice</creatorcontrib><creatorcontrib>Jungers, Raphael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattenet, Sébastien Maurice</au><au>Jungers, Raphael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A categorical view on the converse Lyapunov theorem</atitle><jtitle>arXiv.org</jtitle><date>2023-06-01</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In 1892, Lyapunov provided a fundamental contribution to stability theory by introducing so-called Lyapunov functions and Lyapunov equilibria. He subsequently showed that, for linear systems, the two concepts are equivalent. These concepts have since been extended to diverse types of dynamical systems, and in all settings the equivalence remains valid. However, this involves an often technical proof in each new setting where the concepts are introduced. In this article, we investigate a categorical framework where these results can be unified, exposing a single underlying reason for the equivalence to hold in all cases. First we define what is a dynamical system. Then we introduce the notion of a level-set morphism, which in turn allows us to define the concepts of a Lyapunov equilibrium and a Lyapunov function in a categorical setting. We conclude by a proof of their equivalence.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2821739825 |
source | Free E- Journals |
subjects | Dynamical systems Equivalence Liapunov functions Linear systems |
title | A categorical view on the converse Lyapunov theorem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20categorical%20view%20on%20the%20converse%20Lyapunov%20theorem&rft.jtitle=arXiv.org&rft.au=Mattenet,%20S%C3%A9bastien%20Maurice&rft.date=2023-06-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2821739825%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821739825&rft_id=info:pmid/&rfr_iscdi=true |