Comprehensive survey of human-activity detection and recognition with time-series model
Human activity recognition (HAR) - the exciting time series based classification task has been categorize into vision, sensor and hybrid approaches based on the input modality. The availability of these modalities to capture data for HAR is a motivation factor in building AI / ML enabled application...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2581 |
creator | Ishwarya, K. Nithya, A. Alice |
description | Human activity recognition (HAR) - the exciting time series based classification task has been categorize into vision, sensor and hybrid approaches based on the input modality. The availability of these modalities to capture data for HAR is a motivation factor in building AI / ML enabled applications in emerging areas such as health care, surveillance, etc. Based on the input data captured, HAR helps in identifying the specific movement of an individual. It also helps in inferring the current behavior and goals of the human body depending upon the environment, through a series of observations. A generic process flow of HAR involves data acquisition followed by pre-processing; feature extraction, feature selection and time series based classification process. The pros, and cons of the HAR approaches were analyzed along with a detailed report on the datasets being used which provides a comprehensive review on the usage of appropriate ML algorithms and analyzes the risks in the existing HAR models for the future scopes in this field. |
doi_str_mv | 10.1063/5.0126232 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2821722004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821722004</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-725fb7a920a22b47a5071db16619366ac1d52dae9786cbd9c3188b89d20fdfad3</originalsourceid><addsrcrecordid>eNotUM1KAzEYDKJgrR58g4A3ITX5skk2RylahYIXRW8hu8nalO6PSbbSt7e1Pc0MDDPDIHTL6IxRyR_EjDKQwOEMTZgQjCjJ5DmaUKoLAgX_ukRXKa0pBa1UOUGf874dol_5LoWtx2mMW7_DfYNXY2s7YusctiHvsPPZ73nfYds5HH3df3fhX_-GvMI5tJ4kH4NPuO2d31yji8Zukr854RR9PD-9z1_I8m3xOn9ckoFxnokC0VTKaqAWoCqUFVQxVzEpmeZS2po5Ac56rUpZV07XnJVlVWoHtHGNdXyK7o65Q-x_Rp-yWfdj7PaVBkpgCoDSYu-6P7pSHbI9zDZDDK2NO8OoORxnhDkdx_8AP8tgyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2821722004</pqid></control><display><type>conference_proceeding</type><title>Comprehensive survey of human-activity detection and recognition with time-series model</title><source>AIP Journals Complete</source><creator>Ishwarya, K. ; Nithya, A. Alice</creator><contributor>Samikannu, Ravi ; Olakanmi, Eyitayo Olatunde</contributor><creatorcontrib>Ishwarya, K. ; Nithya, A. Alice ; Samikannu, Ravi ; Olakanmi, Eyitayo Olatunde</creatorcontrib><description>Human activity recognition (HAR) - the exciting time series based classification task has been categorize into vision, sensor and hybrid approaches based on the input modality. The availability of these modalities to capture data for HAR is a motivation factor in building AI / ML enabled applications in emerging areas such as health care, surveillance, etc. Based on the input data captured, HAR helps in identifying the specific movement of an individual. It also helps in inferring the current behavior and goals of the human body depending upon the environment, through a series of observations. A generic process flow of HAR involves data acquisition followed by pre-processing; feature extraction, feature selection and time series based classification process. The pros, and cons of the HAR approaches were analyzed along with a detailed report on the datasets being used which provides a comprehensive review on the usage of appropriate ML algorithms and analyzes the risks in the existing HAR models for the future scopes in this field.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0126232</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Classification ; Data acquisition ; Feature extraction ; Human activity recognition ; Human motion ; Time series</subject><ispartof>AIP conference proceedings, 2023, Vol.2581 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0126232$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Samikannu, Ravi</contributor><contributor>Olakanmi, Eyitayo Olatunde</contributor><creatorcontrib>Ishwarya, K.</creatorcontrib><creatorcontrib>Nithya, A. Alice</creatorcontrib><title>Comprehensive survey of human-activity detection and recognition with time-series model</title><title>AIP conference proceedings</title><description>Human activity recognition (HAR) - the exciting time series based classification task has been categorize into vision, sensor and hybrid approaches based on the input modality. The availability of these modalities to capture data for HAR is a motivation factor in building AI / ML enabled applications in emerging areas such as health care, surveillance, etc. Based on the input data captured, HAR helps in identifying the specific movement of an individual. It also helps in inferring the current behavior and goals of the human body depending upon the environment, through a series of observations. A generic process flow of HAR involves data acquisition followed by pre-processing; feature extraction, feature selection and time series based classification process. The pros, and cons of the HAR approaches were analyzed along with a detailed report on the datasets being used which provides a comprehensive review on the usage of appropriate ML algorithms and analyzes the risks in the existing HAR models for the future scopes in this field.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Data acquisition</subject><subject>Feature extraction</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>Time series</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUM1KAzEYDKJgrR58g4A3ITX5skk2RylahYIXRW8hu8nalO6PSbbSt7e1Pc0MDDPDIHTL6IxRyR_EjDKQwOEMTZgQjCjJ5DmaUKoLAgX_ukRXKa0pBa1UOUGf874dol_5LoWtx2mMW7_DfYNXY2s7YusctiHvsPPZ73nfYds5HH3df3fhX_-GvMI5tJ4kH4NPuO2d31yji8Zukr854RR9PD-9z1_I8m3xOn9ckoFxnokC0VTKaqAWoCqUFVQxVzEpmeZS2po5Ac56rUpZV07XnJVlVWoHtHGNdXyK7o65Q-x_Rp-yWfdj7PaVBkpgCoDSYu-6P7pSHbI9zDZDDK2NO8OoORxnhDkdx_8AP8tgyw</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>Ishwarya, K.</creator><creator>Nithya, A. Alice</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230602</creationdate><title>Comprehensive survey of human-activity detection and recognition with time-series model</title><author>Ishwarya, K. ; Nithya, A. Alice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-725fb7a920a22b47a5071db16619366ac1d52dae9786cbd9c3188b89d20fdfad3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Data acquisition</topic><topic>Feature extraction</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishwarya, K.</creatorcontrib><creatorcontrib>Nithya, A. Alice</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishwarya, K.</au><au>Nithya, A. Alice</au><au>Samikannu, Ravi</au><au>Olakanmi, Eyitayo Olatunde</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comprehensive survey of human-activity detection and recognition with time-series model</atitle><btitle>AIP conference proceedings</btitle><date>2023-06-02</date><risdate>2023</risdate><volume>2581</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Human activity recognition (HAR) - the exciting time series based classification task has been categorize into vision, sensor and hybrid approaches based on the input modality. The availability of these modalities to capture data for HAR is a motivation factor in building AI / ML enabled applications in emerging areas such as health care, surveillance, etc. Based on the input data captured, HAR helps in identifying the specific movement of an individual. It also helps in inferring the current behavior and goals of the human body depending upon the environment, through a series of observations. A generic process flow of HAR involves data acquisition followed by pre-processing; feature extraction, feature selection and time series based classification process. The pros, and cons of the HAR approaches were analyzed along with a detailed report on the datasets being used which provides a comprehensive review on the usage of appropriate ML algorithms and analyzes the risks in the existing HAR models for the future scopes in this field.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0126232</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2581 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2821722004 |
source | AIP Journals Complete |
subjects | Algorithms Classification Data acquisition Feature extraction Human activity recognition Human motion Time series |
title | Comprehensive survey of human-activity detection and recognition with time-series model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comprehensive%20survey%20of%20human-activity%20detection%20and%20recognition%20with%20time-series%20model&rft.btitle=AIP%20conference%20proceedings&rft.au=Ishwarya,%20K.&rft.date=2023-06-02&rft.volume=2581&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0126232&rft_dat=%3Cproquest_scita%3E2821722004%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821722004&rft_id=info:pmid/&rfr_iscdi=true |