Classification of customer review using random forest classifier
Customer review has evolved into an indicator of a person’s judgment in the decision-making process for a specific entity. The growing amount of review data on the Internet provides numerous opportunities for people to find important information. Reviews are very important in business because they a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2738 |
creator | Istiqamah, Nurul Surarso, Bayu Warsito, Budi |
description | Customer review has evolved into an indicator of a person’s judgment in the decision-making process for a specific entity. The growing amount of review data on the Internet provides numerous opportunities for people to find important information. Reviews are very important in business because they allow business people to assess the level of consumer interest in a product that is about to be released. Sentiment analysis can help you solve the problem of categorizing reviews as positive or negative. The purpose of the article is to combine a sentiment analysis technique with a machine learning approach. The Random Forest Classifier is used to classify sentiment groups, which improves sentiment analysis performance significantly. Implementing an imbalanced SMOTE technique improves model performance during preprocessing. The results show that Random Forest on the electronic review can achieve an accuracy of 92 % in product review classification. |
doi_str_mv | 10.1063/5.0140436 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2821721784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821721784</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-dbfca116fd6a9bfb1eee8dcb5e2b3da80d25b459f9e61ed210e6702a794a64e03</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK4e_AcBb0LXTJqk7U0prgoLXhS8hbSZSJbdpibtiv_e6i54Ewbe5XtvZh4hl8AWwFR-IxcMBBO5OiIzkBKyQoE6JjPGKpFxkb-dkrOU1ozxqijKGbmtNyYl73xrBh86GhxtxzSELUYacefxk47Jd-80ms6GLXUhYhpoe3BhPCcnzmwSXhx0Tl6X9y_1Y7Z6fniq71ZZD6ocMtu41gAoZ5WpGtcAIpa2bSTyJremZJbLRsjKVagALQeGqmDcFJUwSiDL5-Rqn9vH8DFON-h1GGM3rdS85FBMU4qJut5TqfXD70e6j35r4pcGpn8a0lIfGvoP3oX4B-reuvwb-y9oBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2821721784</pqid></control><display><type>conference_proceeding</type><title>Classification of customer review using random forest classifier</title><source>AIP Journals Complete</source><creator>Istiqamah, Nurul ; Surarso, Bayu ; Warsito, Budi</creator><contributor>Bima, Damar Nurwahyu ; Soesanto, Qidir Maulana Binu ; Sugito, Heri ; Prasetya, Nor Basid Adiwibawa ; Maulidiyah, Alik</contributor><creatorcontrib>Istiqamah, Nurul ; Surarso, Bayu ; Warsito, Budi ; Bima, Damar Nurwahyu ; Soesanto, Qidir Maulana Binu ; Sugito, Heri ; Prasetya, Nor Basid Adiwibawa ; Maulidiyah, Alik</creatorcontrib><description>Customer review has evolved into an indicator of a person’s judgment in the decision-making process for a specific entity. The growing amount of review data on the Internet provides numerous opportunities for people to find important information. Reviews are very important in business because they allow business people to assess the level of consumer interest in a product that is about to be released. Sentiment analysis can help you solve the problem of categorizing reviews as positive or negative. The purpose of the article is to combine a sentiment analysis technique with a machine learning approach. The Random Forest Classifier is used to classify sentiment groups, which improves sentiment analysis performance significantly. Implementing an imbalanced SMOTE technique improves model performance during preprocessing. The results show that Random Forest on the electronic review can achieve an accuracy of 92 % in product review classification.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0140436</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Classification ; Classifiers ; Customers ; Data mining ; Decision making ; Decision trees ; Machine learning ; Sentiment analysis</subject><ispartof>AIP conference proceedings, 2023, Vol.2738 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0140436$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Bima, Damar Nurwahyu</contributor><contributor>Soesanto, Qidir Maulana Binu</contributor><contributor>Sugito, Heri</contributor><contributor>Prasetya, Nor Basid Adiwibawa</contributor><contributor>Maulidiyah, Alik</contributor><creatorcontrib>Istiqamah, Nurul</creatorcontrib><creatorcontrib>Surarso, Bayu</creatorcontrib><creatorcontrib>Warsito, Budi</creatorcontrib><title>Classification of customer review using random forest classifier</title><title>AIP conference proceedings</title><description>Customer review has evolved into an indicator of a person’s judgment in the decision-making process for a specific entity. The growing amount of review data on the Internet provides numerous opportunities for people to find important information. Reviews are very important in business because they allow business people to assess the level of consumer interest in a product that is about to be released. Sentiment analysis can help you solve the problem of categorizing reviews as positive or negative. The purpose of the article is to combine a sentiment analysis technique with a machine learning approach. The Random Forest Classifier is used to classify sentiment groups, which improves sentiment analysis performance significantly. Implementing an imbalanced SMOTE technique improves model performance during preprocessing. The results show that Random Forest on the electronic review can achieve an accuracy of 92 % in product review classification.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Customers</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Machine learning</subject><subject>Sentiment analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEFLxDAQhYMouK4e_AcBb0LXTJqk7U0prgoLXhS8hbSZSJbdpibtiv_e6i54Ewbe5XtvZh4hl8AWwFR-IxcMBBO5OiIzkBKyQoE6JjPGKpFxkb-dkrOU1ozxqijKGbmtNyYl73xrBh86GhxtxzSELUYacefxk47Jd-80ms6GLXUhYhpoe3BhPCcnzmwSXhx0Tl6X9y_1Y7Z6fniq71ZZD6ocMtu41gAoZ5WpGtcAIpa2bSTyJremZJbLRsjKVagALQeGqmDcFJUwSiDL5-Rqn9vH8DFON-h1GGM3rdS85FBMU4qJut5TqfXD70e6j35r4pcGpn8a0lIfGvoP3oX4B-reuvwb-y9oBw</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>Istiqamah, Nurul</creator><creator>Surarso, Bayu</creator><creator>Warsito, Budi</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230602</creationdate><title>Classification of customer review using random forest classifier</title><author>Istiqamah, Nurul ; Surarso, Bayu ; Warsito, Budi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-dbfca116fd6a9bfb1eee8dcb5e2b3da80d25b459f9e61ed210e6702a794a64e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Customers</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Machine learning</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Istiqamah, Nurul</creatorcontrib><creatorcontrib>Surarso, Bayu</creatorcontrib><creatorcontrib>Warsito, Budi</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Istiqamah, Nurul</au><au>Surarso, Bayu</au><au>Warsito, Budi</au><au>Bima, Damar Nurwahyu</au><au>Soesanto, Qidir Maulana Binu</au><au>Sugito, Heri</au><au>Prasetya, Nor Basid Adiwibawa</au><au>Maulidiyah, Alik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of customer review using random forest classifier</atitle><btitle>AIP conference proceedings</btitle><date>2023-06-02</date><risdate>2023</risdate><volume>2738</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Customer review has evolved into an indicator of a person’s judgment in the decision-making process for a specific entity. The growing amount of review data on the Internet provides numerous opportunities for people to find important information. Reviews are very important in business because they allow business people to assess the level of consumer interest in a product that is about to be released. Sentiment analysis can help you solve the problem of categorizing reviews as positive or negative. The purpose of the article is to combine a sentiment analysis technique with a machine learning approach. The Random Forest Classifier is used to classify sentiment groups, which improves sentiment analysis performance significantly. Implementing an imbalanced SMOTE technique improves model performance during preprocessing. The results show that Random Forest on the electronic review can achieve an accuracy of 92 % in product review classification.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0140436</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2738 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2821721784 |
source | AIP Journals Complete |
subjects | Classification Classifiers Customers Data mining Decision making Decision trees Machine learning Sentiment analysis |
title | Classification of customer review using random forest classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20customer%20review%20using%20random%20forest%20classifier&rft.btitle=AIP%20conference%20proceedings&rft.au=Istiqamah,%20Nurul&rft.date=2023-06-02&rft.volume=2738&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0140436&rft_dat=%3Cproquest_scita%3E2821721784%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821721784&rft_id=info:pmid/&rfr_iscdi=true |