Classification of customer review using random forest classifier

Customer review has evolved into an indicator of a person’s judgment in the decision-making process for a specific entity. The growing amount of review data on the Internet provides numerous opportunities for people to find important information. Reviews are very important in business because they a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Istiqamah, Nurul, Surarso, Bayu, Warsito, Budi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2738
creator Istiqamah, Nurul
Surarso, Bayu
Warsito, Budi
description Customer review has evolved into an indicator of a person’s judgment in the decision-making process for a specific entity. The growing amount of review data on the Internet provides numerous opportunities for people to find important information. Reviews are very important in business because they allow business people to assess the level of consumer interest in a product that is about to be released. Sentiment analysis can help you solve the problem of categorizing reviews as positive or negative. The purpose of the article is to combine a sentiment analysis technique with a machine learning approach. The Random Forest Classifier is used to classify sentiment groups, which improves sentiment analysis performance significantly. Implementing an imbalanced SMOTE technique improves model performance during preprocessing. The results show that Random Forest on the electronic review can achieve an accuracy of 92 % in product review classification.
doi_str_mv 10.1063/5.0140436
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2821721784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821721784</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-dbfca116fd6a9bfb1eee8dcb5e2b3da80d25b459f9e61ed210e6702a794a64e03</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK4e_AcBb0LXTJqk7U0prgoLXhS8hbSZSJbdpibtiv_e6i54Ewbe5XtvZh4hl8AWwFR-IxcMBBO5OiIzkBKyQoE6JjPGKpFxkb-dkrOU1ozxqijKGbmtNyYl73xrBh86GhxtxzSELUYacefxk47Jd-80ms6GLXUhYhpoe3BhPCcnzmwSXhx0Tl6X9y_1Y7Z6fniq71ZZD6ocMtu41gAoZ5WpGtcAIpa2bSTyJremZJbLRsjKVagALQeGqmDcFJUwSiDL5-Rqn9vH8DFON-h1GGM3rdS85FBMU4qJut5TqfXD70e6j35r4pcGpn8a0lIfGvoP3oX4B-reuvwb-y9oBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2821721784</pqid></control><display><type>conference_proceeding</type><title>Classification of customer review using random forest classifier</title><source>AIP Journals Complete</source><creator>Istiqamah, Nurul ; Surarso, Bayu ; Warsito, Budi</creator><contributor>Bima, Damar Nurwahyu ; Soesanto, Qidir Maulana Binu ; Sugito, Heri ; Prasetya, Nor Basid Adiwibawa ; Maulidiyah, Alik</contributor><creatorcontrib>Istiqamah, Nurul ; Surarso, Bayu ; Warsito, Budi ; Bima, Damar Nurwahyu ; Soesanto, Qidir Maulana Binu ; Sugito, Heri ; Prasetya, Nor Basid Adiwibawa ; Maulidiyah, Alik</creatorcontrib><description>Customer review has evolved into an indicator of a person’s judgment in the decision-making process for a specific entity. The growing amount of review data on the Internet provides numerous opportunities for people to find important information. Reviews are very important in business because they allow business people to assess the level of consumer interest in a product that is about to be released. Sentiment analysis can help you solve the problem of categorizing reviews as positive or negative. The purpose of the article is to combine a sentiment analysis technique with a machine learning approach. The Random Forest Classifier is used to classify sentiment groups, which improves sentiment analysis performance significantly. Implementing an imbalanced SMOTE technique improves model performance during preprocessing. The results show that Random Forest on the electronic review can achieve an accuracy of 92 % in product review classification.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0140436</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Classification ; Classifiers ; Customers ; Data mining ; Decision making ; Decision trees ; Machine learning ; Sentiment analysis</subject><ispartof>AIP conference proceedings, 2023, Vol.2738 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0140436$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Bima, Damar Nurwahyu</contributor><contributor>Soesanto, Qidir Maulana Binu</contributor><contributor>Sugito, Heri</contributor><contributor>Prasetya, Nor Basid Adiwibawa</contributor><contributor>Maulidiyah, Alik</contributor><creatorcontrib>Istiqamah, Nurul</creatorcontrib><creatorcontrib>Surarso, Bayu</creatorcontrib><creatorcontrib>Warsito, Budi</creatorcontrib><title>Classification of customer review using random forest classifier</title><title>AIP conference proceedings</title><description>Customer review has evolved into an indicator of a person’s judgment in the decision-making process for a specific entity. The growing amount of review data on the Internet provides numerous opportunities for people to find important information. Reviews are very important in business because they allow business people to assess the level of consumer interest in a product that is about to be released. Sentiment analysis can help you solve the problem of categorizing reviews as positive or negative. The purpose of the article is to combine a sentiment analysis technique with a machine learning approach. The Random Forest Classifier is used to classify sentiment groups, which improves sentiment analysis performance significantly. Implementing an imbalanced SMOTE technique improves model performance during preprocessing. The results show that Random Forest on the electronic review can achieve an accuracy of 92 % in product review classification.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Customers</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Machine learning</subject><subject>Sentiment analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEFLxDAQhYMouK4e_AcBb0LXTJqk7U0prgoLXhS8hbSZSJbdpibtiv_e6i54Ewbe5XtvZh4hl8AWwFR-IxcMBBO5OiIzkBKyQoE6JjPGKpFxkb-dkrOU1ozxqijKGbmtNyYl73xrBh86GhxtxzSELUYacefxk47Jd-80ms6GLXUhYhpoe3BhPCcnzmwSXhx0Tl6X9y_1Y7Z6fniq71ZZD6ocMtu41gAoZ5WpGtcAIpa2bSTyJremZJbLRsjKVagALQeGqmDcFJUwSiDL5-Rqn9vH8DFON-h1GGM3rdS85FBMU4qJut5TqfXD70e6j35r4pcGpn8a0lIfGvoP3oX4B-reuvwb-y9oBw</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>Istiqamah, Nurul</creator><creator>Surarso, Bayu</creator><creator>Warsito, Budi</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230602</creationdate><title>Classification of customer review using random forest classifier</title><author>Istiqamah, Nurul ; Surarso, Bayu ; Warsito, Budi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-dbfca116fd6a9bfb1eee8dcb5e2b3da80d25b459f9e61ed210e6702a794a64e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Customers</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Machine learning</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Istiqamah, Nurul</creatorcontrib><creatorcontrib>Surarso, Bayu</creatorcontrib><creatorcontrib>Warsito, Budi</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Istiqamah, Nurul</au><au>Surarso, Bayu</au><au>Warsito, Budi</au><au>Bima, Damar Nurwahyu</au><au>Soesanto, Qidir Maulana Binu</au><au>Sugito, Heri</au><au>Prasetya, Nor Basid Adiwibawa</au><au>Maulidiyah, Alik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of customer review using random forest classifier</atitle><btitle>AIP conference proceedings</btitle><date>2023-06-02</date><risdate>2023</risdate><volume>2738</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Customer review has evolved into an indicator of a person’s judgment in the decision-making process for a specific entity. The growing amount of review data on the Internet provides numerous opportunities for people to find important information. Reviews are very important in business because they allow business people to assess the level of consumer interest in a product that is about to be released. Sentiment analysis can help you solve the problem of categorizing reviews as positive or negative. The purpose of the article is to combine a sentiment analysis technique with a machine learning approach. The Random Forest Classifier is used to classify sentiment groups, which improves sentiment analysis performance significantly. Implementing an imbalanced SMOTE technique improves model performance during preprocessing. The results show that Random Forest on the electronic review can achieve an accuracy of 92 % in product review classification.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0140436</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2738 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2821721784
source AIP Journals Complete
subjects Classification
Classifiers
Customers
Data mining
Decision making
Decision trees
Machine learning
Sentiment analysis
title Classification of customer review using random forest classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20customer%20review%20using%20random%20forest%20classifier&rft.btitle=AIP%20conference%20proceedings&rft.au=Istiqamah,%20Nurul&rft.date=2023-06-02&rft.volume=2738&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0140436&rft_dat=%3Cproquest_scita%3E2821721784%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821721784&rft_id=info:pmid/&rfr_iscdi=true