Detection of Road Condition Defects Using Multiple Sensors and IoT Technology: A Review
The transportation efficiency and driving safety of road networks, which play an essential role in economic prosperity, are impacted significantly by damage and defects on the road surface. In current practice, it can take weeks or even months before related government departments repair such road c...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of intelligent transportation systems 2023, Vol.4, p.372-392 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 392 |
---|---|
container_issue | |
container_start_page | 372 |
container_title | IEEE open journal of intelligent transportation systems |
container_volume | 4 |
creator | Alrajhi, A. Roy, K. Qingge, L. Kribs, J. |
description | The transportation efficiency and driving safety of road networks, which play an essential role in economic prosperity, are impacted significantly by damage and defects on the road surface. In current practice, it can take weeks or even months before related government departments repair such road conditions, mainly due to lack of awareness of any damage. This paper reviews the current status and limitation of a framework for sensors devices and assessment of road surface conditions. The review also incorporates the most relevant machine learning-based methods, challenges, and future trends to underpin large-scale deployment of road defects automation identification. It is expected that the technology can provide both qualitative and quantitative information about the road surface condition and thus enable timely maintenance to improve transportation efficiency and driving safety. |
doi_str_mv | 10.1109/OJITS.2023.3237480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821718009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10049088</ieee_id><doaj_id>oai_doaj_org_article_4ce05bc494a943098355039de2685186</doaj_id><sourcerecordid>2821718009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-45ad60fa4c32f0cfe6b4aaca18822f831300f5eb1388fa426d2eba860259a5453</originalsourceid><addsrcrecordid>eNpNUdtKAzEQXURBqf6A-BDwuXVy2ya-Seulogha8TGk2UlNWTc12Sr9e7etiE8zzJxz5nKK4pTCgFLQF0_3k-nLgAHjA874UCjYK45YqYb9oaJ8_19-WJzkvAAAJilloI-KtzG26NoQGxI9eY62IqPYVGFbGaPvepm85tDMyeOqbsOyRvKCTY4pE9tUZBKnZIruvYl1nK8vyRV5xq-A38fFgbd1xpPf2Cteb66no7v-w9PtZHT10HcCyrYvpK1K8FY4zjw4j-VMWOssVYoxrzjlAF7ijHKlOhQrK4Yzq8ruAG2lkLxXTHa6VbQLs0zhw6a1iTaYbSGmubGpDa5GIxyCnDmhhdWCg1ZcSuC6wu49kqqy0zrfaS1T_Fxhbs0irlLTrW-YYnRIFYDuUGyHcinmnND_TaVgNn6YrR9m44f59aMjne1IARH_EUBoUIr_AK98hGk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821718009</pqid></control><display><type>article</type><title>Detection of Road Condition Defects Using Multiple Sensors and IoT Technology: A Review</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Alrajhi, A. ; Roy, K. ; Qingge, L. ; Kribs, J.</creator><creatorcontrib>Alrajhi, A. ; Roy, K. ; Qingge, L. ; Kribs, J.</creatorcontrib><description>The transportation efficiency and driving safety of road networks, which play an essential role in economic prosperity, are impacted significantly by damage and defects on the road surface. In current practice, it can take weeks or even months before related government departments repair such road conditions, mainly due to lack of awareness of any damage. This paper reviews the current status and limitation of a framework for sensors devices and assessment of road surface conditions. The review also incorporates the most relevant machine learning-based methods, challenges, and future trends to underpin large-scale deployment of road defects automation identification. It is expected that the technology can provide both qualitative and quantitative information about the road surface condition and thus enable timely maintenance to improve transportation efficiency and driving safety.</description><identifier>ISSN: 2687-7813</identifier><identifier>EISSN: 2687-7813</identifier><identifier>DOI: 10.1109/OJITS.2023.3237480</identifier><identifier>CODEN: IOJICL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Accidents ; Defects ; Impact damage ; Instruments ; Intelligent sensors ; Internet of Things ; Machine learning ; Maintenance engineering ; Multisensor applications ; networked sensor ; Road conditions ; Road maintenance ; Road surface ; road surface condition ; Roads ; Sensors ; transportation ; Transportation networks ; Vehicle safety</subject><ispartof>IEEE open journal of intelligent transportation systems, 2023, Vol.4, p.372-392</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-45ad60fa4c32f0cfe6b4aaca18822f831300f5eb1388fa426d2eba860259a5453</citedby><cites>FETCH-LOGICAL-c406t-45ad60fa4c32f0cfe6b4aaca18822f831300f5eb1388fa426d2eba860259a5453</cites><orcidid>0000-0002-9026-5322 ; 0000-0002-9745-9584 ; 0000-0002-2493-2588 ; 0009-0008-5491-6328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10049088$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Alrajhi, A.</creatorcontrib><creatorcontrib>Roy, K.</creatorcontrib><creatorcontrib>Qingge, L.</creatorcontrib><creatorcontrib>Kribs, J.</creatorcontrib><title>Detection of Road Condition Defects Using Multiple Sensors and IoT Technology: A Review</title><title>IEEE open journal of intelligent transportation systems</title><addtitle>OJITS</addtitle><description>The transportation efficiency and driving safety of road networks, which play an essential role in economic prosperity, are impacted significantly by damage and defects on the road surface. In current practice, it can take weeks or even months before related government departments repair such road conditions, mainly due to lack of awareness of any damage. This paper reviews the current status and limitation of a framework for sensors devices and assessment of road surface conditions. The review also incorporates the most relevant machine learning-based methods, challenges, and future trends to underpin large-scale deployment of road defects automation identification. It is expected that the technology can provide both qualitative and quantitative information about the road surface condition and thus enable timely maintenance to improve transportation efficiency and driving safety.</description><subject>Accelerometers</subject><subject>Accidents</subject><subject>Defects</subject><subject>Impact damage</subject><subject>Instruments</subject><subject>Intelligent sensors</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Maintenance engineering</subject><subject>Multisensor applications</subject><subject>networked sensor</subject><subject>Road conditions</subject><subject>Road maintenance</subject><subject>Road surface</subject><subject>road surface condition</subject><subject>Roads</subject><subject>Sensors</subject><subject>transportation</subject><subject>Transportation networks</subject><subject>Vehicle safety</subject><issn>2687-7813</issn><issn>2687-7813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEQXURBqf6A-BDwuXVy2ya-Seulogha8TGk2UlNWTc12Sr9e7etiE8zzJxz5nKK4pTCgFLQF0_3k-nLgAHjA874UCjYK45YqYb9oaJ8_19-WJzkvAAAJilloI-KtzG26NoQGxI9eY62IqPYVGFbGaPvepm85tDMyeOqbsOyRvKCTY4pE9tUZBKnZIruvYl1nK8vyRV5xq-A38fFgbd1xpPf2Cteb66no7v-w9PtZHT10HcCyrYvpK1K8FY4zjw4j-VMWOssVYoxrzjlAF7ijHKlOhQrK4Yzq8ruAG2lkLxXTHa6VbQLs0zhw6a1iTaYbSGmubGpDa5GIxyCnDmhhdWCg1ZcSuC6wu49kqqy0zrfaS1T_Fxhbs0irlLTrW-YYnRIFYDuUGyHcinmnND_TaVgNn6YrR9m44f59aMjne1IARH_EUBoUIr_AK98hGk</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Alrajhi, A.</creator><creator>Roy, K.</creator><creator>Qingge, L.</creator><creator>Kribs, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9026-5322</orcidid><orcidid>https://orcid.org/0000-0002-9745-9584</orcidid><orcidid>https://orcid.org/0000-0002-2493-2588</orcidid><orcidid>https://orcid.org/0009-0008-5491-6328</orcidid></search><sort><creationdate>2023</creationdate><title>Detection of Road Condition Defects Using Multiple Sensors and IoT Technology: A Review</title><author>Alrajhi, A. ; Roy, K. ; Qingge, L. ; Kribs, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-45ad60fa4c32f0cfe6b4aaca18822f831300f5eb1388fa426d2eba860259a5453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometers</topic><topic>Accidents</topic><topic>Defects</topic><topic>Impact damage</topic><topic>Instruments</topic><topic>Intelligent sensors</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Maintenance engineering</topic><topic>Multisensor applications</topic><topic>networked sensor</topic><topic>Road conditions</topic><topic>Road maintenance</topic><topic>Road surface</topic><topic>road surface condition</topic><topic>Roads</topic><topic>Sensors</topic><topic>transportation</topic><topic>Transportation networks</topic><topic>Vehicle safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alrajhi, A.</creatorcontrib><creatorcontrib>Roy, K.</creatorcontrib><creatorcontrib>Qingge, L.</creatorcontrib><creatorcontrib>Kribs, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alrajhi, A.</au><au>Roy, K.</au><au>Qingge, L.</au><au>Kribs, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Road Condition Defects Using Multiple Sensors and IoT Technology: A Review</atitle><jtitle>IEEE open journal of intelligent transportation systems</jtitle><stitle>OJITS</stitle><date>2023</date><risdate>2023</risdate><volume>4</volume><spage>372</spage><epage>392</epage><pages>372-392</pages><issn>2687-7813</issn><eissn>2687-7813</eissn><coden>IOJICL</coden><abstract>The transportation efficiency and driving safety of road networks, which play an essential role in economic prosperity, are impacted significantly by damage and defects on the road surface. In current practice, it can take weeks or even months before related government departments repair such road conditions, mainly due to lack of awareness of any damage. This paper reviews the current status and limitation of a framework for sensors devices and assessment of road surface conditions. The review also incorporates the most relevant machine learning-based methods, challenges, and future trends to underpin large-scale deployment of road defects automation identification. It is expected that the technology can provide both qualitative and quantitative information about the road surface condition and thus enable timely maintenance to improve transportation efficiency and driving safety.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJITS.2023.3237480</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9026-5322</orcidid><orcidid>https://orcid.org/0000-0002-9745-9584</orcidid><orcidid>https://orcid.org/0000-0002-2493-2588</orcidid><orcidid>https://orcid.org/0009-0008-5491-6328</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2687-7813 |
ispartof | IEEE open journal of intelligent transportation systems, 2023, Vol.4, p.372-392 |
issn | 2687-7813 2687-7813 |
language | eng |
recordid | cdi_proquest_journals_2821718009 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accelerometers Accidents Defects Impact damage Instruments Intelligent sensors Internet of Things Machine learning Maintenance engineering Multisensor applications networked sensor Road conditions Road maintenance Road surface road surface condition Roads Sensors transportation Transportation networks Vehicle safety |
title | Detection of Road Condition Defects Using Multiple Sensors and IoT Technology: A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Road%20Condition%20Defects%20Using%20Multiple%20Sensors%20and%20IoT%20Technology:%20A%20Review&rft.jtitle=IEEE%20open%20journal%20of%20intelligent%20transportation%20systems&rft.au=Alrajhi,%20A.&rft.date=2023&rft.volume=4&rft.spage=372&rft.epage=392&rft.pages=372-392&rft.issn=2687-7813&rft.eissn=2687-7813&rft.coden=IOJICL&rft_id=info:doi/10.1109/OJITS.2023.3237480&rft_dat=%3Cproquest_cross%3E2821718009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821718009&rft_id=info:pmid/&rft_ieee_id=10049088&rft_doaj_id=oai_doaj_org_article_4ce05bc494a943098355039de2685186&rfr_iscdi=true |