Detection of Road Condition Defects Using Multiple Sensors and IoT Technology: A Review

The transportation efficiency and driving safety of road networks, which play an essential role in economic prosperity, are impacted significantly by damage and defects on the road surface. In current practice, it can take weeks or even months before related government departments repair such road c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of intelligent transportation systems 2023, Vol.4, p.372-392
Hauptverfasser: Alrajhi, A., Roy, K., Qingge, L., Kribs, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 392
container_issue
container_start_page 372
container_title IEEE open journal of intelligent transportation systems
container_volume 4
creator Alrajhi, A.
Roy, K.
Qingge, L.
Kribs, J.
description The transportation efficiency and driving safety of road networks, which play an essential role in economic prosperity, are impacted significantly by damage and defects on the road surface. In current practice, it can take weeks or even months before related government departments repair such road conditions, mainly due to lack of awareness of any damage. This paper reviews the current status and limitation of a framework for sensors devices and assessment of road surface conditions. The review also incorporates the most relevant machine learning-based methods, challenges, and future trends to underpin large-scale deployment of road defects automation identification. It is expected that the technology can provide both qualitative and quantitative information about the road surface condition and thus enable timely maintenance to improve transportation efficiency and driving safety.
doi_str_mv 10.1109/OJITS.2023.3237480
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821718009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10049088</ieee_id><doaj_id>oai_doaj_org_article_4ce05bc494a943098355039de2685186</doaj_id><sourcerecordid>2821718009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-45ad60fa4c32f0cfe6b4aaca18822f831300f5eb1388fa426d2eba860259a5453</originalsourceid><addsrcrecordid>eNpNUdtKAzEQXURBqf6A-BDwuXVy2ya-Seulogha8TGk2UlNWTc12Sr9e7etiE8zzJxz5nKK4pTCgFLQF0_3k-nLgAHjA874UCjYK45YqYb9oaJ8_19-WJzkvAAAJilloI-KtzG26NoQGxI9eY62IqPYVGFbGaPvepm85tDMyeOqbsOyRvKCTY4pE9tUZBKnZIruvYl1nK8vyRV5xq-A38fFgbd1xpPf2Cteb66no7v-w9PtZHT10HcCyrYvpK1K8FY4zjw4j-VMWOssVYoxrzjlAF7ijHKlOhQrK4Yzq8ruAG2lkLxXTHa6VbQLs0zhw6a1iTaYbSGmubGpDa5GIxyCnDmhhdWCg1ZcSuC6wu49kqqy0zrfaS1T_Fxhbs0irlLTrW-YYnRIFYDuUGyHcinmnND_TaVgNn6YrR9m44f59aMjne1IARH_EUBoUIr_AK98hGk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821718009</pqid></control><display><type>article</type><title>Detection of Road Condition Defects Using Multiple Sensors and IoT Technology: A Review</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Alrajhi, A. ; Roy, K. ; Qingge, L. ; Kribs, J.</creator><creatorcontrib>Alrajhi, A. ; Roy, K. ; Qingge, L. ; Kribs, J.</creatorcontrib><description>The transportation efficiency and driving safety of road networks, which play an essential role in economic prosperity, are impacted significantly by damage and defects on the road surface. In current practice, it can take weeks or even months before related government departments repair such road conditions, mainly due to lack of awareness of any damage. This paper reviews the current status and limitation of a framework for sensors devices and assessment of road surface conditions. The review also incorporates the most relevant machine learning-based methods, challenges, and future trends to underpin large-scale deployment of road defects automation identification. It is expected that the technology can provide both qualitative and quantitative information about the road surface condition and thus enable timely maintenance to improve transportation efficiency and driving safety.</description><identifier>ISSN: 2687-7813</identifier><identifier>EISSN: 2687-7813</identifier><identifier>DOI: 10.1109/OJITS.2023.3237480</identifier><identifier>CODEN: IOJICL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Accidents ; Defects ; Impact damage ; Instruments ; Intelligent sensors ; Internet of Things ; Machine learning ; Maintenance engineering ; Multisensor applications ; networked sensor ; Road conditions ; Road maintenance ; Road surface ; road surface condition ; Roads ; Sensors ; transportation ; Transportation networks ; Vehicle safety</subject><ispartof>IEEE open journal of intelligent transportation systems, 2023, Vol.4, p.372-392</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-45ad60fa4c32f0cfe6b4aaca18822f831300f5eb1388fa426d2eba860259a5453</citedby><cites>FETCH-LOGICAL-c406t-45ad60fa4c32f0cfe6b4aaca18822f831300f5eb1388fa426d2eba860259a5453</cites><orcidid>0000-0002-9026-5322 ; 0000-0002-9745-9584 ; 0000-0002-2493-2588 ; 0009-0008-5491-6328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10049088$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Alrajhi, A.</creatorcontrib><creatorcontrib>Roy, K.</creatorcontrib><creatorcontrib>Qingge, L.</creatorcontrib><creatorcontrib>Kribs, J.</creatorcontrib><title>Detection of Road Condition Defects Using Multiple Sensors and IoT Technology: A Review</title><title>IEEE open journal of intelligent transportation systems</title><addtitle>OJITS</addtitle><description>The transportation efficiency and driving safety of road networks, which play an essential role in economic prosperity, are impacted significantly by damage and defects on the road surface. In current practice, it can take weeks or even months before related government departments repair such road conditions, mainly due to lack of awareness of any damage. This paper reviews the current status and limitation of a framework for sensors devices and assessment of road surface conditions. The review also incorporates the most relevant machine learning-based methods, challenges, and future trends to underpin large-scale deployment of road defects automation identification. It is expected that the technology can provide both qualitative and quantitative information about the road surface condition and thus enable timely maintenance to improve transportation efficiency and driving safety.</description><subject>Accelerometers</subject><subject>Accidents</subject><subject>Defects</subject><subject>Impact damage</subject><subject>Instruments</subject><subject>Intelligent sensors</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Maintenance engineering</subject><subject>Multisensor applications</subject><subject>networked sensor</subject><subject>Road conditions</subject><subject>Road maintenance</subject><subject>Road surface</subject><subject>road surface condition</subject><subject>Roads</subject><subject>Sensors</subject><subject>transportation</subject><subject>Transportation networks</subject><subject>Vehicle safety</subject><issn>2687-7813</issn><issn>2687-7813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEQXURBqf6A-BDwuXVy2ya-Seulogha8TGk2UlNWTc12Sr9e7etiE8zzJxz5nKK4pTCgFLQF0_3k-nLgAHjA874UCjYK45YqYb9oaJ8_19-WJzkvAAAJilloI-KtzG26NoQGxI9eY62IqPYVGFbGaPvepm85tDMyeOqbsOyRvKCTY4pE9tUZBKnZIruvYl1nK8vyRV5xq-A38fFgbd1xpPf2Cteb66no7v-w9PtZHT10HcCyrYvpK1K8FY4zjw4j-VMWOssVYoxrzjlAF7ijHKlOhQrK4Yzq8ruAG2lkLxXTHa6VbQLs0zhw6a1iTaYbSGmubGpDa5GIxyCnDmhhdWCg1ZcSuC6wu49kqqy0zrfaS1T_Fxhbs0irlLTrW-YYnRIFYDuUGyHcinmnND_TaVgNn6YrR9m44f59aMjne1IARH_EUBoUIr_AK98hGk</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Alrajhi, A.</creator><creator>Roy, K.</creator><creator>Qingge, L.</creator><creator>Kribs, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9026-5322</orcidid><orcidid>https://orcid.org/0000-0002-9745-9584</orcidid><orcidid>https://orcid.org/0000-0002-2493-2588</orcidid><orcidid>https://orcid.org/0009-0008-5491-6328</orcidid></search><sort><creationdate>2023</creationdate><title>Detection of Road Condition Defects Using Multiple Sensors and IoT Technology: A Review</title><author>Alrajhi, A. ; Roy, K. ; Qingge, L. ; Kribs, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-45ad60fa4c32f0cfe6b4aaca18822f831300f5eb1388fa426d2eba860259a5453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometers</topic><topic>Accidents</topic><topic>Defects</topic><topic>Impact damage</topic><topic>Instruments</topic><topic>Intelligent sensors</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Maintenance engineering</topic><topic>Multisensor applications</topic><topic>networked sensor</topic><topic>Road conditions</topic><topic>Road maintenance</topic><topic>Road surface</topic><topic>road surface condition</topic><topic>Roads</topic><topic>Sensors</topic><topic>transportation</topic><topic>Transportation networks</topic><topic>Vehicle safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alrajhi, A.</creatorcontrib><creatorcontrib>Roy, K.</creatorcontrib><creatorcontrib>Qingge, L.</creatorcontrib><creatorcontrib>Kribs, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alrajhi, A.</au><au>Roy, K.</au><au>Qingge, L.</au><au>Kribs, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Road Condition Defects Using Multiple Sensors and IoT Technology: A Review</atitle><jtitle>IEEE open journal of intelligent transportation systems</jtitle><stitle>OJITS</stitle><date>2023</date><risdate>2023</risdate><volume>4</volume><spage>372</spage><epage>392</epage><pages>372-392</pages><issn>2687-7813</issn><eissn>2687-7813</eissn><coden>IOJICL</coden><abstract>The transportation efficiency and driving safety of road networks, which play an essential role in economic prosperity, are impacted significantly by damage and defects on the road surface. In current practice, it can take weeks or even months before related government departments repair such road conditions, mainly due to lack of awareness of any damage. This paper reviews the current status and limitation of a framework for sensors devices and assessment of road surface conditions. The review also incorporates the most relevant machine learning-based methods, challenges, and future trends to underpin large-scale deployment of road defects automation identification. It is expected that the technology can provide both qualitative and quantitative information about the road surface condition and thus enable timely maintenance to improve transportation efficiency and driving safety.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJITS.2023.3237480</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9026-5322</orcidid><orcidid>https://orcid.org/0000-0002-9745-9584</orcidid><orcidid>https://orcid.org/0000-0002-2493-2588</orcidid><orcidid>https://orcid.org/0009-0008-5491-6328</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2687-7813
ispartof IEEE open journal of intelligent transportation systems, 2023, Vol.4, p.372-392
issn 2687-7813
2687-7813
language eng
recordid cdi_proquest_journals_2821718009
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accelerometers
Accidents
Defects
Impact damage
Instruments
Intelligent sensors
Internet of Things
Machine learning
Maintenance engineering
Multisensor applications
networked sensor
Road conditions
Road maintenance
Road surface
road surface condition
Roads
Sensors
transportation
Transportation networks
Vehicle safety
title Detection of Road Condition Defects Using Multiple Sensors and IoT Technology: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Road%20Condition%20Defects%20Using%20Multiple%20Sensors%20and%20IoT%20Technology:%20A%20Review&rft.jtitle=IEEE%20open%20journal%20of%20intelligent%20transportation%20systems&rft.au=Alrajhi,%20A.&rft.date=2023&rft.volume=4&rft.spage=372&rft.epage=392&rft.pages=372-392&rft.issn=2687-7813&rft.eissn=2687-7813&rft.coden=IOJICL&rft_id=info:doi/10.1109/OJITS.2023.3237480&rft_dat=%3Cproquest_cross%3E2821718009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821718009&rft_id=info:pmid/&rft_ieee_id=10049088&rft_doaj_id=oai_doaj_org_article_4ce05bc494a943098355039de2685186&rfr_iscdi=true