A Numerical Mode Matching (NMM) Method for Optical Fibers with Kerr Nonlinearity
Recently, the reshaping of the transverse light field profile in nonlinear multimode fibers (MMFs) has attracted great attentions. However, the electromagnetic (EM) fields in such nonlinear media cannot be easily and accurately calculated by using the traditional computational electromagnetics metho...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2023-06, Vol.71 (6), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 71 |
creator | Wu, Xue Liang Dai, Junwen Liu, Jie Chen, Jin-hui Liu, Qing Huo |
description | Recently, the reshaping of the transverse light field profile in nonlinear multimode fibers (MMFs) has attracted great attentions. However, the electromagnetic (EM) fields in such nonlinear media cannot be easily and accurately calculated by using the traditional computational electromagnetics methods due to the nonlinearity of Kerr optical materials in graded-index (GRIN) MMFs. The iterative division method based on the 2.5-D spectral element numerical mode matching (SNMM) method is developed to address this problem. The SNMM method is a semi-analytical method, which can effectively reduce the computational costs to obtain highly accurate solutions. Starting from the numerical results of SNMM, the iterative division method solves electromagnetic fields of the linear-to-nonlinear transition process together iteratively. In this work, several improvements are proposed to extend the SNMM for Kerr optical nonlinear MMFs. The governing equations with anisotropic permittivity with Kerr optical nonlinear media are established in the cylindrical coordinate system. The absorbing boundary condition (ABC) is introduced to replace the perfectly matched layer (PML) so that the eigenmodes of a waveguide can be obtained accurately. Numerical results show the validity, accuracy and advantages of the proposed method in simulated MMFs. |
doi_str_mv | 10.1109/TAP.2023.3262700 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2821717283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10090443</ieee_id><sourcerecordid>2821717283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-fa2205d3ee2b6c465cda1272cc52718f4accc52a5262154000be239f89ed2b9f3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExG9e_CwiRc9FGdnt19HQkSNFDhg4m2z3U5lCbS4LTH8e4tw8DQzyfPOZB7GbgUMhID0aTGcDxBQDiRGGAOcsZ4IwyRARHHOegAiCVKMPi_ZVdOsulElSvXYfMinuw15Z82aZ3VBPDOtXbrqiz9Ms-yRZ9Qu64KXteezbfuHjV1OvuE_rl3yd_KeT-tq7Soy3rX7a3ZRmnVDN6faZx_j58XoNZjMXt5Gw0lgMcU2KA0ihIUkwjyyKgptYQTGaG2IsUhKZeyhNWH3jQgVAOSEMi2TlArM01L22f1x79bX3ztqWr2qd77qTmpMUMQixkR2FBwp6-um8VTqrXcb4_dagD540503ffCmT966yN0x4ojoHw4pKCXlLxCAZ34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821717283</pqid></control><display><type>article</type><title>A Numerical Mode Matching (NMM) Method for Optical Fibers with Kerr Nonlinearity</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Xue Liang ; Dai, Junwen ; Liu, Jie ; Chen, Jin-hui ; Liu, Qing Huo</creator><creatorcontrib>Wu, Xue Liang ; Dai, Junwen ; Liu, Jie ; Chen, Jin-hui ; Liu, Qing Huo</creatorcontrib><description>Recently, the reshaping of the transverse light field profile in nonlinear multimode fibers (MMFs) has attracted great attentions. However, the electromagnetic (EM) fields in such nonlinear media cannot be easily and accurately calculated by using the traditional computational electromagnetics methods due to the nonlinearity of Kerr optical materials in graded-index (GRIN) MMFs. The iterative division method based on the 2.5-D spectral element numerical mode matching (SNMM) method is developed to address this problem. The SNMM method is a semi-analytical method, which can effectively reduce the computational costs to obtain highly accurate solutions. Starting from the numerical results of SNMM, the iterative division method solves electromagnetic fields of the linear-to-nonlinear transition process together iteratively. In this work, several improvements are proposed to extend the SNMM for Kerr optical nonlinear MMFs. The governing equations with anisotropic permittivity with Kerr optical nonlinear media are established in the cylindrical coordinate system. The absorbing boundary condition (ABC) is introduced to replace the perfectly matched layer (PML) so that the eigenmodes of a waveguide can be obtained accurately. Numerical results show the validity, accuracy and advantages of the proposed method in simulated MMFs.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2023.3262700</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorbing boundary condition (ABC) ; Boundary conditions ; Computing costs ; Cylindrical coordinates ; Iterative division method ; Iterative methods ; Kerr optical nonlinearity ; Matching ; Mathematical models ; Multimode fibers ; Nonlinear optics ; Nonlinearity ; Numerical mode matching (NMM) method ; Optical fibers ; Optical materials ; Optical mixing ; Optical pulses ; Optical waveguides ; Optics ; Perfectly matched layers ; Permittivity ; Waveguides</subject><ispartof>IEEE transactions on antennas and propagation, 2023-06, Vol.71 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-fa2205d3ee2b6c465cda1272cc52718f4accc52a5262154000be239f89ed2b9f3</citedby><cites>FETCH-LOGICAL-c292t-fa2205d3ee2b6c465cda1272cc52718f4accc52a5262154000be239f89ed2b9f3</cites><orcidid>0000-0001-5114-7457 ; 0000-0002-8217-4869 ; 0000-0001-5286-4423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10090443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10090443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Xue Liang</creatorcontrib><creatorcontrib>Dai, Junwen</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Chen, Jin-hui</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><title>A Numerical Mode Matching (NMM) Method for Optical Fibers with Kerr Nonlinearity</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Recently, the reshaping of the transverse light field profile in nonlinear multimode fibers (MMFs) has attracted great attentions. However, the electromagnetic (EM) fields in such nonlinear media cannot be easily and accurately calculated by using the traditional computational electromagnetics methods due to the nonlinearity of Kerr optical materials in graded-index (GRIN) MMFs. The iterative division method based on the 2.5-D spectral element numerical mode matching (SNMM) method is developed to address this problem. The SNMM method is a semi-analytical method, which can effectively reduce the computational costs to obtain highly accurate solutions. Starting from the numerical results of SNMM, the iterative division method solves electromagnetic fields of the linear-to-nonlinear transition process together iteratively. In this work, several improvements are proposed to extend the SNMM for Kerr optical nonlinear MMFs. The governing equations with anisotropic permittivity with Kerr optical nonlinear media are established in the cylindrical coordinate system. The absorbing boundary condition (ABC) is introduced to replace the perfectly matched layer (PML) so that the eigenmodes of a waveguide can be obtained accurately. Numerical results show the validity, accuracy and advantages of the proposed method in simulated MMFs.</description><subject>Absorbing boundary condition (ABC)</subject><subject>Boundary conditions</subject><subject>Computing costs</subject><subject>Cylindrical coordinates</subject><subject>Iterative division method</subject><subject>Iterative methods</subject><subject>Kerr optical nonlinearity</subject><subject>Matching</subject><subject>Mathematical models</subject><subject>Multimode fibers</subject><subject>Nonlinear optics</subject><subject>Nonlinearity</subject><subject>Numerical mode matching (NMM) method</subject><subject>Optical fibers</subject><subject>Optical materials</subject><subject>Optical mixing</subject><subject>Optical pulses</subject><subject>Optical waveguides</subject><subject>Optics</subject><subject>Perfectly matched layers</subject><subject>Permittivity</subject><subject>Waveguides</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGExG9e_CwiRc9FGdnt19HQkSNFDhg4m2z3U5lCbS4LTH8e4tw8DQzyfPOZB7GbgUMhID0aTGcDxBQDiRGGAOcsZ4IwyRARHHOegAiCVKMPi_ZVdOsulElSvXYfMinuw15Z82aZ3VBPDOtXbrqiz9Ms-yRZ9Qu64KXteezbfuHjV1OvuE_rl3yd_KeT-tq7Soy3rX7a3ZRmnVDN6faZx_j58XoNZjMXt5Gw0lgMcU2KA0ihIUkwjyyKgptYQTGaG2IsUhKZeyhNWH3jQgVAOSEMi2TlArM01L22f1x79bX3ztqWr2qd77qTmpMUMQixkR2FBwp6-um8VTqrXcb4_dagD540503ffCmT966yN0x4ojoHw4pKCXlLxCAZ34</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wu, Xue Liang</creator><creator>Dai, Junwen</creator><creator>Liu, Jie</creator><creator>Chen, Jin-hui</creator><creator>Liu, Qing Huo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5114-7457</orcidid><orcidid>https://orcid.org/0000-0002-8217-4869</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid></search><sort><creationdate>20230601</creationdate><title>A Numerical Mode Matching (NMM) Method for Optical Fibers with Kerr Nonlinearity</title><author>Wu, Xue Liang ; Dai, Junwen ; Liu, Jie ; Chen, Jin-hui ; Liu, Qing Huo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-fa2205d3ee2b6c465cda1272cc52718f4accc52a5262154000be239f89ed2b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorbing boundary condition (ABC)</topic><topic>Boundary conditions</topic><topic>Computing costs</topic><topic>Cylindrical coordinates</topic><topic>Iterative division method</topic><topic>Iterative methods</topic><topic>Kerr optical nonlinearity</topic><topic>Matching</topic><topic>Mathematical models</topic><topic>Multimode fibers</topic><topic>Nonlinear optics</topic><topic>Nonlinearity</topic><topic>Numerical mode matching (NMM) method</topic><topic>Optical fibers</topic><topic>Optical materials</topic><topic>Optical mixing</topic><topic>Optical pulses</topic><topic>Optical waveguides</topic><topic>Optics</topic><topic>Perfectly matched layers</topic><topic>Permittivity</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xue Liang</creatorcontrib><creatorcontrib>Dai, Junwen</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Chen, Jin-hui</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Xue Liang</au><au>Dai, Junwen</au><au>Liu, Jie</au><au>Chen, Jin-hui</au><au>Liu, Qing Huo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Mode Matching (NMM) Method for Optical Fibers with Kerr Nonlinearity</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>71</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Recently, the reshaping of the transverse light field profile in nonlinear multimode fibers (MMFs) has attracted great attentions. However, the electromagnetic (EM) fields in such nonlinear media cannot be easily and accurately calculated by using the traditional computational electromagnetics methods due to the nonlinearity of Kerr optical materials in graded-index (GRIN) MMFs. The iterative division method based on the 2.5-D spectral element numerical mode matching (SNMM) method is developed to address this problem. The SNMM method is a semi-analytical method, which can effectively reduce the computational costs to obtain highly accurate solutions. Starting from the numerical results of SNMM, the iterative division method solves electromagnetic fields of the linear-to-nonlinear transition process together iteratively. In this work, several improvements are proposed to extend the SNMM for Kerr optical nonlinear MMFs. The governing equations with anisotropic permittivity with Kerr optical nonlinear media are established in the cylindrical coordinate system. The absorbing boundary condition (ABC) is introduced to replace the perfectly matched layer (PML) so that the eigenmodes of a waveguide can be obtained accurately. Numerical results show the validity, accuracy and advantages of the proposed method in simulated MMFs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2023.3262700</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5114-7457</orcidid><orcidid>https://orcid.org/0000-0002-8217-4869</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2023-06, Vol.71 (6), p.1-1 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_2821717283 |
source | IEEE Electronic Library (IEL) |
subjects | Absorbing boundary condition (ABC) Boundary conditions Computing costs Cylindrical coordinates Iterative division method Iterative methods Kerr optical nonlinearity Matching Mathematical models Multimode fibers Nonlinear optics Nonlinearity Numerical mode matching (NMM) method Optical fibers Optical materials Optical mixing Optical pulses Optical waveguides Optics Perfectly matched layers Permittivity Waveguides |
title | A Numerical Mode Matching (NMM) Method for Optical Fibers with Kerr Nonlinearity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Mode%20Matching%20(NMM)%20Method%20for%20Optical%20Fibers%20with%20Kerr%20Nonlinearity&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Wu,%20Xue%20Liang&rft.date=2023-06-01&rft.volume=71&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2023.3262700&rft_dat=%3Cproquest_RIE%3E2821717283%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821717283&rft_id=info:pmid/&rft_ieee_id=10090443&rfr_iscdi=true |