ACAM-AD: Autocorrelation and attention mechanism-based anomaly detection in multivariate time series

Multivariate time series anomaly detection has made significant progress and has been studied in many fields. One of the difficulties in time-series data analysis is the complex nonlinear dependencies between multiple time steps and multiple variables. Therefore, detecting anomalies in these data is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2023-06, Vol.44 (6), p.9039-9051
Hauptverfasser: He, Qiang, Wang, Guanqun, Huo, Lianzhi, Wang, Hengyou, Zhang, Changlun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9051
container_issue 6
container_start_page 9039
container_title Journal of intelligent & fuzzy systems
container_volume 44
creator He, Qiang
Wang, Guanqun
Huo, Lianzhi
Wang, Hengyou
Zhang, Changlun
description Multivariate time series anomaly detection has made significant progress and has been studied in many fields. One of the difficulties in time-series data analysis is the complex nonlinear dependencies between multiple time steps and multiple variables. Therefore, detecting anomalies in these data is challenging. Although many studies used classical attention mechanisms to model the temporal patterns of data, few have combined multiple attention mechanisms and analyzed the data’s temporal characteristics and feature correlations. Therefore, we propose an autocorrelation and attention mechanism-based anomaly detection (ACAM-AD) framework that combines an autocorrelation model based on the Autoformer model, which is superior to the self-attention mechanism, a multi-head graph attention network, and a dot-product attention mechanism to model the complex dependencies of data considering temporal and feature dimensions. The autoregressive model is parallelized with the neural network, and a sparse autocorrelation mechanism and sparse graph attention network are used to reduce model complexity. Experiments on public datasets show that the model is effective and performs better than the baseline model.
doi_str_mv 10.3233/JIFS-224416
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821701619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821701619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-3c4fb6b1e247f1f16a33e2b46b724019be093052fa3bbf46153eb9dac6c908ba3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEqWw4gcisUQGj-04CbuoUCgqYgGsI9uZCFd5FNtB6t-TtqxmRnN0r3QIuQZ2J7gQ96-r5QflXEpQJ2QGeZbSvFDZ6bQzJSlwqc7JRQgbxiBLOZuRulyUb7R8fEjKMQ528B5bHd3QJ7qvEx0j9oerQ_utexc6anTA6dMPnW53SY0R7YFwEzS20f1q73TEJLoOk4DeYbgkZ41uA179zzn5Wj59Ll7o-v15tSjX1HIoIhVWNkYZQC6zBhpQWgjkRiqTccmgMMgKwVLeaGFMIxWkAk1Ra6tswXKjxZzcHHO3fvgZMcRqM4y-nyornnPIGCgoJur2SFk_hOCxqbbeddrvKmDVXmO111gdNYo_UFhlwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821701619</pqid></control><display><type>article</type><title>ACAM-AD: Autocorrelation and attention mechanism-based anomaly detection in multivariate time series</title><source>EBSCOhost Business Source Complete</source><creator>He, Qiang ; Wang, Guanqun ; Huo, Lianzhi ; Wang, Hengyou ; Zhang, Changlun</creator><creatorcontrib>He, Qiang ; Wang, Guanqun ; Huo, Lianzhi ; Wang, Hengyou ; Zhang, Changlun</creatorcontrib><description>Multivariate time series anomaly detection has made significant progress and has been studied in many fields. One of the difficulties in time-series data analysis is the complex nonlinear dependencies between multiple time steps and multiple variables. Therefore, detecting anomalies in these data is challenging. Although many studies used classical attention mechanisms to model the temporal patterns of data, few have combined multiple attention mechanisms and analyzed the data’s temporal characteristics and feature correlations. Therefore, we propose an autocorrelation and attention mechanism-based anomaly detection (ACAM-AD) framework that combines an autocorrelation model based on the Autoformer model, which is superior to the self-attention mechanism, a multi-head graph attention network, and a dot-product attention mechanism to model the complex dependencies of data considering temporal and feature dimensions. The autoregressive model is parallelized with the neural network, and a sparse autocorrelation mechanism and sparse graph attention network are used to reduce model complexity. Experiments on public datasets show that the model is effective and performs better than the baseline model.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-224416</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Anomalies ; Autocorrelation ; Autoregressive models ; Complexity ; Data analysis ; Multivariate analysis ; Neural networks ; Time series</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2023-06, Vol.44 (6), p.9039-9051</ispartof><rights>Copyright IOS Press BV 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-3c4fb6b1e247f1f16a33e2b46b724019be093052fa3bbf46153eb9dac6c908ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Wang, Guanqun</creatorcontrib><creatorcontrib>Huo, Lianzhi</creatorcontrib><creatorcontrib>Wang, Hengyou</creatorcontrib><creatorcontrib>Zhang, Changlun</creatorcontrib><title>ACAM-AD: Autocorrelation and attention mechanism-based anomaly detection in multivariate time series</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Multivariate time series anomaly detection has made significant progress and has been studied in many fields. One of the difficulties in time-series data analysis is the complex nonlinear dependencies between multiple time steps and multiple variables. Therefore, detecting anomalies in these data is challenging. Although many studies used classical attention mechanisms to model the temporal patterns of data, few have combined multiple attention mechanisms and analyzed the data’s temporal characteristics and feature correlations. Therefore, we propose an autocorrelation and attention mechanism-based anomaly detection (ACAM-AD) framework that combines an autocorrelation model based on the Autoformer model, which is superior to the self-attention mechanism, a multi-head graph attention network, and a dot-product attention mechanism to model the complex dependencies of data considering temporal and feature dimensions. The autoregressive model is parallelized with the neural network, and a sparse autocorrelation mechanism and sparse graph attention network are used to reduce model complexity. Experiments on public datasets show that the model is effective and performs better than the baseline model.</description><subject>Anomalies</subject><subject>Autocorrelation</subject><subject>Autoregressive models</subject><subject>Complexity</subject><subject>Data analysis</subject><subject>Multivariate analysis</subject><subject>Neural networks</subject><subject>Time series</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEqWw4gcisUQGj-04CbuoUCgqYgGsI9uZCFd5FNtB6t-TtqxmRnN0r3QIuQZ2J7gQ96-r5QflXEpQJ2QGeZbSvFDZ6bQzJSlwqc7JRQgbxiBLOZuRulyUb7R8fEjKMQ528B5bHd3QJ7qvEx0j9oerQ_utexc6anTA6dMPnW53SY0R7YFwEzS20f1q73TEJLoOk4DeYbgkZ41uA179zzn5Wj59Ll7o-v15tSjX1HIoIhVWNkYZQC6zBhpQWgjkRiqTccmgMMgKwVLeaGFMIxWkAk1Ra6tswXKjxZzcHHO3fvgZMcRqM4y-nyornnPIGCgoJur2SFk_hOCxqbbeddrvKmDVXmO111gdNYo_UFhlwQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>He, Qiang</creator><creator>Wang, Guanqun</creator><creator>Huo, Lianzhi</creator><creator>Wang, Hengyou</creator><creator>Zhang, Changlun</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230601</creationdate><title>ACAM-AD: Autocorrelation and attention mechanism-based anomaly detection in multivariate time series</title><author>He, Qiang ; Wang, Guanqun ; Huo, Lianzhi ; Wang, Hengyou ; Zhang, Changlun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-3c4fb6b1e247f1f16a33e2b46b724019be093052fa3bbf46153eb9dac6c908ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Autocorrelation</topic><topic>Autoregressive models</topic><topic>Complexity</topic><topic>Data analysis</topic><topic>Multivariate analysis</topic><topic>Neural networks</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Wang, Guanqun</creatorcontrib><creatorcontrib>Huo, Lianzhi</creatorcontrib><creatorcontrib>Wang, Hengyou</creatorcontrib><creatorcontrib>Zhang, Changlun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Qiang</au><au>Wang, Guanqun</au><au>Huo, Lianzhi</au><au>Wang, Hengyou</au><au>Zhang, Changlun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACAM-AD: Autocorrelation and attention mechanism-based anomaly detection in multivariate time series</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>44</volume><issue>6</issue><spage>9039</spage><epage>9051</epage><pages>9039-9051</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Multivariate time series anomaly detection has made significant progress and has been studied in many fields. One of the difficulties in time-series data analysis is the complex nonlinear dependencies between multiple time steps and multiple variables. Therefore, detecting anomalies in these data is challenging. Although many studies used classical attention mechanisms to model the temporal patterns of data, few have combined multiple attention mechanisms and analyzed the data’s temporal characteristics and feature correlations. Therefore, we propose an autocorrelation and attention mechanism-based anomaly detection (ACAM-AD) framework that combines an autocorrelation model based on the Autoformer model, which is superior to the self-attention mechanism, a multi-head graph attention network, and a dot-product attention mechanism to model the complex dependencies of data considering temporal and feature dimensions. The autoregressive model is parallelized with the neural network, and a sparse autocorrelation mechanism and sparse graph attention network are used to reduce model complexity. Experiments on public datasets show that the model is effective and performs better than the baseline model.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-224416</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2023-06, Vol.44 (6), p.9039-9051
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2821701619
source EBSCOhost Business Source Complete
subjects Anomalies
Autocorrelation
Autoregressive models
Complexity
Data analysis
Multivariate analysis
Neural networks
Time series
title ACAM-AD: Autocorrelation and attention mechanism-based anomaly detection in multivariate time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACAM-AD:%20Autocorrelation%20and%20attention%20mechanism-based%20anomaly%20detection%20in%20multivariate%20time%20series&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=He,%20Qiang&rft.date=2023-06-01&rft.volume=44&rft.issue=6&rft.spage=9039&rft.epage=9051&rft.pages=9039-9051&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-224416&rft_dat=%3Cproquest_cross%3E2821701619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821701619&rft_id=info:pmid/&rfr_iscdi=true