ACAM-AD: Autocorrelation and attention mechanism-based anomaly detection in multivariate time series
Multivariate time series anomaly detection has made significant progress and has been studied in many fields. One of the difficulties in time-series data analysis is the complex nonlinear dependencies between multiple time steps and multiple variables. Therefore, detecting anomalies in these data is...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2023-06, Vol.44 (6), p.9039-9051 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9051 |
---|---|
container_issue | 6 |
container_start_page | 9039 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 44 |
creator | He, Qiang Wang, Guanqun Huo, Lianzhi Wang, Hengyou Zhang, Changlun |
description | Multivariate time series anomaly detection has made significant progress and has been studied in many fields. One of the difficulties in time-series data analysis is the complex nonlinear dependencies between multiple time steps and multiple variables. Therefore, detecting anomalies in these data is challenging. Although many studies used classical attention mechanisms to model the temporal patterns of data, few have combined multiple attention mechanisms and analyzed the data’s temporal characteristics and feature correlations. Therefore, we propose an autocorrelation and attention mechanism-based anomaly detection (ACAM-AD) framework that combines an autocorrelation model based on the Autoformer model, which is superior to the self-attention mechanism, a multi-head graph attention network, and a dot-product attention mechanism to model the complex dependencies of data considering temporal and feature dimensions. The autoregressive model is parallelized with the neural network, and a sparse autocorrelation mechanism and sparse graph attention network are used to reduce model complexity. Experiments on public datasets show that the model is effective and performs better than the baseline model. |
doi_str_mv | 10.3233/JIFS-224416 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821701619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821701619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-3c4fb6b1e247f1f16a33e2b46b724019be093052fa3bbf46153eb9dac6c908ba3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEqWw4gcisUQGj-04CbuoUCgqYgGsI9uZCFd5FNtB6t-TtqxmRnN0r3QIuQZ2J7gQ96-r5QflXEpQJ2QGeZbSvFDZ6bQzJSlwqc7JRQgbxiBLOZuRulyUb7R8fEjKMQ528B5bHd3QJ7qvEx0j9oerQ_utexc6anTA6dMPnW53SY0R7YFwEzS20f1q73TEJLoOk4DeYbgkZ41uA179zzn5Wj59Ll7o-v15tSjX1HIoIhVWNkYZQC6zBhpQWgjkRiqTccmgMMgKwVLeaGFMIxWkAk1Ra6tswXKjxZzcHHO3fvgZMcRqM4y-nyornnPIGCgoJur2SFk_hOCxqbbeddrvKmDVXmO111gdNYo_UFhlwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821701619</pqid></control><display><type>article</type><title>ACAM-AD: Autocorrelation and attention mechanism-based anomaly detection in multivariate time series</title><source>EBSCOhost Business Source Complete</source><creator>He, Qiang ; Wang, Guanqun ; Huo, Lianzhi ; Wang, Hengyou ; Zhang, Changlun</creator><creatorcontrib>He, Qiang ; Wang, Guanqun ; Huo, Lianzhi ; Wang, Hengyou ; Zhang, Changlun</creatorcontrib><description>Multivariate time series anomaly detection has made significant progress and has been studied in many fields. One of the difficulties in time-series data analysis is the complex nonlinear dependencies between multiple time steps and multiple variables. Therefore, detecting anomalies in these data is challenging. Although many studies used classical attention mechanisms to model the temporal patterns of data, few have combined multiple attention mechanisms and analyzed the data’s temporal characteristics and feature correlations. Therefore, we propose an autocorrelation and attention mechanism-based anomaly detection (ACAM-AD) framework that combines an autocorrelation model based on the Autoformer model, which is superior to the self-attention mechanism, a multi-head graph attention network, and a dot-product attention mechanism to model the complex dependencies of data considering temporal and feature dimensions. The autoregressive model is parallelized with the neural network, and a sparse autocorrelation mechanism and sparse graph attention network are used to reduce model complexity. Experiments on public datasets show that the model is effective and performs better than the baseline model.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-224416</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Anomalies ; Autocorrelation ; Autoregressive models ; Complexity ; Data analysis ; Multivariate analysis ; Neural networks ; Time series</subject><ispartof>Journal of intelligent & fuzzy systems, 2023-06, Vol.44 (6), p.9039-9051</ispartof><rights>Copyright IOS Press BV 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-3c4fb6b1e247f1f16a33e2b46b724019be093052fa3bbf46153eb9dac6c908ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Wang, Guanqun</creatorcontrib><creatorcontrib>Huo, Lianzhi</creatorcontrib><creatorcontrib>Wang, Hengyou</creatorcontrib><creatorcontrib>Zhang, Changlun</creatorcontrib><title>ACAM-AD: Autocorrelation and attention mechanism-based anomaly detection in multivariate time series</title><title>Journal of intelligent & fuzzy systems</title><description>Multivariate time series anomaly detection has made significant progress and has been studied in many fields. One of the difficulties in time-series data analysis is the complex nonlinear dependencies between multiple time steps and multiple variables. Therefore, detecting anomalies in these data is challenging. Although many studies used classical attention mechanisms to model the temporal patterns of data, few have combined multiple attention mechanisms and analyzed the data’s temporal characteristics and feature correlations. Therefore, we propose an autocorrelation and attention mechanism-based anomaly detection (ACAM-AD) framework that combines an autocorrelation model based on the Autoformer model, which is superior to the self-attention mechanism, a multi-head graph attention network, and a dot-product attention mechanism to model the complex dependencies of data considering temporal and feature dimensions. The autoregressive model is parallelized with the neural network, and a sparse autocorrelation mechanism and sparse graph attention network are used to reduce model complexity. Experiments on public datasets show that the model is effective and performs better than the baseline model.</description><subject>Anomalies</subject><subject>Autocorrelation</subject><subject>Autoregressive models</subject><subject>Complexity</subject><subject>Data analysis</subject><subject>Multivariate analysis</subject><subject>Neural networks</subject><subject>Time series</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEqWw4gcisUQGj-04CbuoUCgqYgGsI9uZCFd5FNtB6t-TtqxmRnN0r3QIuQZ2J7gQ96-r5QflXEpQJ2QGeZbSvFDZ6bQzJSlwqc7JRQgbxiBLOZuRulyUb7R8fEjKMQ528B5bHd3QJ7qvEx0j9oerQ_utexc6anTA6dMPnW53SY0R7YFwEzS20f1q73TEJLoOk4DeYbgkZ41uA179zzn5Wj59Ll7o-v15tSjX1HIoIhVWNkYZQC6zBhpQWgjkRiqTccmgMMgKwVLeaGFMIxWkAk1Ra6tswXKjxZzcHHO3fvgZMcRqM4y-nyornnPIGCgoJur2SFk_hOCxqbbeddrvKmDVXmO111gdNYo_UFhlwQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>He, Qiang</creator><creator>Wang, Guanqun</creator><creator>Huo, Lianzhi</creator><creator>Wang, Hengyou</creator><creator>Zhang, Changlun</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230601</creationdate><title>ACAM-AD: Autocorrelation and attention mechanism-based anomaly detection in multivariate time series</title><author>He, Qiang ; Wang, Guanqun ; Huo, Lianzhi ; Wang, Hengyou ; Zhang, Changlun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-3c4fb6b1e247f1f16a33e2b46b724019be093052fa3bbf46153eb9dac6c908ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Autocorrelation</topic><topic>Autoregressive models</topic><topic>Complexity</topic><topic>Data analysis</topic><topic>Multivariate analysis</topic><topic>Neural networks</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Wang, Guanqun</creatorcontrib><creatorcontrib>Huo, Lianzhi</creatorcontrib><creatorcontrib>Wang, Hengyou</creatorcontrib><creatorcontrib>Zhang, Changlun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Qiang</au><au>Wang, Guanqun</au><au>Huo, Lianzhi</au><au>Wang, Hengyou</au><au>Zhang, Changlun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACAM-AD: Autocorrelation and attention mechanism-based anomaly detection in multivariate time series</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>44</volume><issue>6</issue><spage>9039</spage><epage>9051</epage><pages>9039-9051</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Multivariate time series anomaly detection has made significant progress and has been studied in many fields. One of the difficulties in time-series data analysis is the complex nonlinear dependencies between multiple time steps and multiple variables. Therefore, detecting anomalies in these data is challenging. Although many studies used classical attention mechanisms to model the temporal patterns of data, few have combined multiple attention mechanisms and analyzed the data’s temporal characteristics and feature correlations. Therefore, we propose an autocorrelation and attention mechanism-based anomaly detection (ACAM-AD) framework that combines an autocorrelation model based on the Autoformer model, which is superior to the self-attention mechanism, a multi-head graph attention network, and a dot-product attention mechanism to model the complex dependencies of data considering temporal and feature dimensions. The autoregressive model is parallelized with the neural network, and a sparse autocorrelation mechanism and sparse graph attention network are used to reduce model complexity. Experiments on public datasets show that the model is effective and performs better than the baseline model.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-224416</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2023-06, Vol.44 (6), p.9039-9051 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2821701619 |
source | EBSCOhost Business Source Complete |
subjects | Anomalies Autocorrelation Autoregressive models Complexity Data analysis Multivariate analysis Neural networks Time series |
title | ACAM-AD: Autocorrelation and attention mechanism-based anomaly detection in multivariate time series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACAM-AD:%20Autocorrelation%20and%20attention%20mechanism-based%20anomaly%20detection%20in%20multivariate%20time%20series&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=He,%20Qiang&rft.date=2023-06-01&rft.volume=44&rft.issue=6&rft.spage=9039&rft.epage=9051&rft.pages=9039-9051&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-224416&rft_dat=%3Cproquest_cross%3E2821701619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821701619&rft_id=info:pmid/&rfr_iscdi=true |