Cloud computing and machine learning for analysis of health care data based on neuro fuzzy logistic regression

Healthcare data is the most sensitive information for processing through machine learning and cloud computing in the various healthcare organizations. Electronic Health Record (EHR) manipulation are now on the rise, and we need to focus on using the data generated by the healthcare applications. Man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2023-06, Vol.44 (6), p.9955-9964
Hauptverfasser: Dhiyanesh, B., Rameshkumar, M., Karthick, K., Radha, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Healthcare data is the most sensitive information for processing through machine learning and cloud computing in the various healthcare organizations. Electronic Health Record (EHR) manipulation are now on the rise, and we need to focus on using the data generated by the healthcare applications. Many sensitive data are associated with various health care domains, particularly neurology and cardiology. Previous approaches, such as manual data records, had significant disadvantages, and hence disease prediction based on the above records was found ineffective resulting with improper diagnosis on the patients. These data records require special attention, and current frameworks focused on these areas must implement sophisticated technologies to predict specific patterns. To address the above concerns, the proposed work incorporates the integration of Neuro Fuzzy Logistic Regression (NFLR) machine learning algorithm and cloud computing storage management to solve these problems. The usage of cloud storage reduces data duplication while handling the storage of EHRs where the proposed ML algorithm accurately predict the disease. In the proposed research, the features are extracted using a specific algorithm –Self-organizing Clustering (SOC) which forms a clustered data with highest weight. To select the maximum number of features, and to predict the disease risk factors, the S2NO algorithm and NFLR algorithms are used in this work. Further, the database storage estimation with fuzzy rules, logistic analysis, and other benefits such as experimental learning of different ML tools, data privacy constraints related to healthcare are considered in this paper.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-223280