Separation of ethylene glycol, 1,2‐butanediol and 1,2‐propanediol with azeotropic distillation

1,2‐butanediol (1,2‐BDO) and 1,2‐propanediol (1,2‐PDO) are inevitably side produced in the ethylene glycol (EG) production processes from non‐petroleum routes, but are very difficult to separate by the ordinary distillation method because of the closeness of their boiling temperatures to EG, thus co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemical engineering 2023-07, Vol.101 (7), p.4217-4229
Hauptverfasser: Wang, Jia, Shen, Rongchun, Cao, Yueqiang, Li, Wei, Zhou, Jinghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4229
container_issue 7
container_start_page 4217
container_title Canadian journal of chemical engineering
container_volume 101
creator Wang, Jia
Shen, Rongchun
Cao, Yueqiang
Li, Wei
Zhou, Jinghong
description 1,2‐butanediol (1,2‐BDO) and 1,2‐propanediol (1,2‐PDO) are inevitably side produced in the ethylene glycol (EG) production processes from non‐petroleum routes, but are very difficult to separate by the ordinary distillation method because of the closeness of their boiling temperatures to EG, thus compromise the economy of these processes. The azeotropic distillation process using 1‐octanol (CPO) as an entrainer to separate EG and 1,2‐BDO mixture with or without 1,2‐PDO was studied in this paper. Four binary vapour–liquid equilibrium data of EG‐1,2‐BDO, EG‐CPO, 1,2‐BDO‐CPO, and 1,2‐PDO‐CPO were measured using an Ellis equilibrium kettle and regressed with the thermodynamic model of non‐random two liquid to obtain the corresponding binary interaction parameters. On this basis, azeotropic distillations with CPO as an entrainer were designed to separate EG and 1,2‐BDO with or without 1,2‐PDO. The complete separation processes, including the azeotropic distillation and CPO recovery process consisting of extraction with H2O and subsequent distillation, were simulated and optimized with Aspen Plus for both the EG‐1,2‐BDO binary mixture and the EG‐1,2‐BDO‐1,2‐PDO ternary mixture. The simulation results show that the azeotropic distillation method with CPO as an entrainer can effectively separate the mixture of EG‐1,2‐BDO and EG‐1,2‐BDO‐1,2‐PDO, achieving EG of 99.90% purity with 99.98% recovery and 1,2‐BDO of 99.30% purity with 99.45% recovery for the binary mixture, and achieving EG of 99.90% purity with 99.80% recovery, 1,2‐BDO of 99.35% purity with 99.35% recovery, and 1,2‐PDO of 90.59% purity with 94.38% recovery for the ternary mixture. These processes are promising for industrial application and can significantly improve the economy of non‐petroleum EG production.
doi_str_mv 10.1002/cjce.24771
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821654763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821654763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-74284b7e1c6da9d141cffb69359d2bfd4d867989e2eac67c86c863481c1565323</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouK5efIKCN9mumSRNm6Ms6z8WPKjgLaRJ6maJTW27LPXkI_iMPond7XoVBob5-M03w4fQOeApYEyu9ErbKWFpCgdoBIKKGIN4PUQjjHEWM0zZMTppmlU_EsxghPInW6latS6UUSgi2y47b0sbvflOBz-JYEJ-vr7zdatKa1zwkSrNXqzqUP2pG9cuI_VpQ9uLTkfGNa3zfud7io4K5Rt7tu9j9HIzf57dxYvH2_vZ9SLWFAPEKSMZy1MLmhslDDDQRZFzQRNhSF4YZjKeikxYYpXmqc54X5RloCHhCSV0jC4G3_6xj7VtWrkK67rsT0qSEeAJSzntqcuB0nVomtoWsqrdu6o7CVhuM5TbDOUuwx6GAd44b7t_SDl7mM2HnV8OXXWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821654763</pqid></control><display><type>article</type><title>Separation of ethylene glycol, 1,2‐butanediol and 1,2‐propanediol with azeotropic distillation</title><source>Wiley Online Library All Journals</source><creator>Wang, Jia ; Shen, Rongchun ; Cao, Yueqiang ; Li, Wei ; Zhou, Jinghong</creator><creatorcontrib>Wang, Jia ; Shen, Rongchun ; Cao, Yueqiang ; Li, Wei ; Zhou, Jinghong</creatorcontrib><description>1,2‐butanediol (1,2‐BDO) and 1,2‐propanediol (1,2‐PDO) are inevitably side produced in the ethylene glycol (EG) production processes from non‐petroleum routes, but are very difficult to separate by the ordinary distillation method because of the closeness of their boiling temperatures to EG, thus compromise the economy of these processes. The azeotropic distillation process using 1‐octanol (CPO) as an entrainer to separate EG and 1,2‐BDO mixture with or without 1,2‐PDO was studied in this paper. Four binary vapour–liquid equilibrium data of EG‐1,2‐BDO, EG‐CPO, 1,2‐BDO‐CPO, and 1,2‐PDO‐CPO were measured using an Ellis equilibrium kettle and regressed with the thermodynamic model of non‐random two liquid to obtain the corresponding binary interaction parameters. On this basis, azeotropic distillations with CPO as an entrainer were designed to separate EG and 1,2‐BDO with or without 1,2‐PDO. The complete separation processes, including the azeotropic distillation and CPO recovery process consisting of extraction with H2O and subsequent distillation, were simulated and optimized with Aspen Plus for both the EG‐1,2‐BDO binary mixture and the EG‐1,2‐BDO‐1,2‐PDO ternary mixture. The simulation results show that the azeotropic distillation method with CPO as an entrainer can effectively separate the mixture of EG‐1,2‐BDO and EG‐1,2‐BDO‐1,2‐PDO, achieving EG of 99.90% purity with 99.98% recovery and 1,2‐BDO of 99.30% purity with 99.45% recovery for the binary mixture, and achieving EG of 99.90% purity with 99.80% recovery, 1,2‐BDO of 99.35% purity with 99.35% recovery, and 1,2‐PDO of 90.59% purity with 94.38% recovery for the ternary mixture. These processes are promising for industrial application and can significantly improve the economy of non‐petroleum EG production.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.24771</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>1,2‐butanediol ; 1,2‐propanediol ; azeotropic distillation ; Binary mixtures ; Butanediol ; Distillation ; Entrainment ; Ethylene glycol ; Industrial applications ; Interaction parameters ; Liquid-vapor equilibrium ; Octanol ; Polyesters ; Purity ; Recovery ; Separation ; Thermodynamic models ; vapour–liquid equilibrium</subject><ispartof>Canadian journal of chemical engineering, 2023-07, Vol.101 (7), p.4217-4229</ispartof><rights>2022 Canadian Society for Chemical Engineering.</rights><rights>2023 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-74284b7e1c6da9d141cffb69359d2bfd4d867989e2eac67c86c863481c1565323</citedby><cites>FETCH-LOGICAL-c3011-74284b7e1c6da9d141cffb69359d2bfd4d867989e2eac67c86c863481c1565323</cites><orcidid>0000-0001-9540-5534 ; 0000-0002-9632-4602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjce.24771$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjce.24771$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Wang, Jia</creatorcontrib><creatorcontrib>Shen, Rongchun</creatorcontrib><creatorcontrib>Cao, Yueqiang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhou, Jinghong</creatorcontrib><title>Separation of ethylene glycol, 1,2‐butanediol and 1,2‐propanediol with azeotropic distillation</title><title>Canadian journal of chemical engineering</title><description>1,2‐butanediol (1,2‐BDO) and 1,2‐propanediol (1,2‐PDO) are inevitably side produced in the ethylene glycol (EG) production processes from non‐petroleum routes, but are very difficult to separate by the ordinary distillation method because of the closeness of their boiling temperatures to EG, thus compromise the economy of these processes. The azeotropic distillation process using 1‐octanol (CPO) as an entrainer to separate EG and 1,2‐BDO mixture with or without 1,2‐PDO was studied in this paper. Four binary vapour–liquid equilibrium data of EG‐1,2‐BDO, EG‐CPO, 1,2‐BDO‐CPO, and 1,2‐PDO‐CPO were measured using an Ellis equilibrium kettle and regressed with the thermodynamic model of non‐random two liquid to obtain the corresponding binary interaction parameters. On this basis, azeotropic distillations with CPO as an entrainer were designed to separate EG and 1,2‐BDO with or without 1,2‐PDO. The complete separation processes, including the azeotropic distillation and CPO recovery process consisting of extraction with H2O and subsequent distillation, were simulated and optimized with Aspen Plus for both the EG‐1,2‐BDO binary mixture and the EG‐1,2‐BDO‐1,2‐PDO ternary mixture. The simulation results show that the azeotropic distillation method with CPO as an entrainer can effectively separate the mixture of EG‐1,2‐BDO and EG‐1,2‐BDO‐1,2‐PDO, achieving EG of 99.90% purity with 99.98% recovery and 1,2‐BDO of 99.30% purity with 99.45% recovery for the binary mixture, and achieving EG of 99.90% purity with 99.80% recovery, 1,2‐BDO of 99.35% purity with 99.35% recovery, and 1,2‐PDO of 90.59% purity with 94.38% recovery for the ternary mixture. These processes are promising for industrial application and can significantly improve the economy of non‐petroleum EG production.</description><subject>1,2‐butanediol</subject><subject>1,2‐propanediol</subject><subject>azeotropic distillation</subject><subject>Binary mixtures</subject><subject>Butanediol</subject><subject>Distillation</subject><subject>Entrainment</subject><subject>Ethylene glycol</subject><subject>Industrial applications</subject><subject>Interaction parameters</subject><subject>Liquid-vapor equilibrium</subject><subject>Octanol</subject><subject>Polyesters</subject><subject>Purity</subject><subject>Recovery</subject><subject>Separation</subject><subject>Thermodynamic models</subject><subject>vapour–liquid equilibrium</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQxoMouK5efIKCN9mumSRNm6Ms6z8WPKjgLaRJ6maJTW27LPXkI_iMPond7XoVBob5-M03w4fQOeApYEyu9ErbKWFpCgdoBIKKGIN4PUQjjHEWM0zZMTppmlU_EsxghPInW6latS6UUSgi2y47b0sbvflOBz-JYEJ-vr7zdatKa1zwkSrNXqzqUP2pG9cuI_VpQ9uLTkfGNa3zfud7io4K5Rt7tu9j9HIzf57dxYvH2_vZ9SLWFAPEKSMZy1MLmhslDDDQRZFzQRNhSF4YZjKeikxYYpXmqc54X5RloCHhCSV0jC4G3_6xj7VtWrkK67rsT0qSEeAJSzntqcuB0nVomtoWsqrdu6o7CVhuM5TbDOUuwx6GAd44b7t_SDl7mM2HnV8OXXWY</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Wang, Jia</creator><creator>Shen, Rongchun</creator><creator>Cao, Yueqiang</creator><creator>Li, Wei</creator><creator>Zhou, Jinghong</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9540-5534</orcidid><orcidid>https://orcid.org/0000-0002-9632-4602</orcidid></search><sort><creationdate>202307</creationdate><title>Separation of ethylene glycol, 1,2‐butanediol and 1,2‐propanediol with azeotropic distillation</title><author>Wang, Jia ; Shen, Rongchun ; Cao, Yueqiang ; Li, Wei ; Zhou, Jinghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-74284b7e1c6da9d141cffb69359d2bfd4d867989e2eac67c86c863481c1565323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>1,2‐butanediol</topic><topic>1,2‐propanediol</topic><topic>azeotropic distillation</topic><topic>Binary mixtures</topic><topic>Butanediol</topic><topic>Distillation</topic><topic>Entrainment</topic><topic>Ethylene glycol</topic><topic>Industrial applications</topic><topic>Interaction parameters</topic><topic>Liquid-vapor equilibrium</topic><topic>Octanol</topic><topic>Polyesters</topic><topic>Purity</topic><topic>Recovery</topic><topic>Separation</topic><topic>Thermodynamic models</topic><topic>vapour–liquid equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jia</creatorcontrib><creatorcontrib>Shen, Rongchun</creatorcontrib><creatorcontrib>Cao, Yueqiang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhou, Jinghong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jia</au><au>Shen, Rongchun</au><au>Cao, Yueqiang</au><au>Li, Wei</au><au>Zhou, Jinghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation of ethylene glycol, 1,2‐butanediol and 1,2‐propanediol with azeotropic distillation</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2023-07</date><risdate>2023</risdate><volume>101</volume><issue>7</issue><spage>4217</spage><epage>4229</epage><pages>4217-4229</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>1,2‐butanediol (1,2‐BDO) and 1,2‐propanediol (1,2‐PDO) are inevitably side produced in the ethylene glycol (EG) production processes from non‐petroleum routes, but are very difficult to separate by the ordinary distillation method because of the closeness of their boiling temperatures to EG, thus compromise the economy of these processes. The azeotropic distillation process using 1‐octanol (CPO) as an entrainer to separate EG and 1,2‐BDO mixture with or without 1,2‐PDO was studied in this paper. Four binary vapour–liquid equilibrium data of EG‐1,2‐BDO, EG‐CPO, 1,2‐BDO‐CPO, and 1,2‐PDO‐CPO were measured using an Ellis equilibrium kettle and regressed with the thermodynamic model of non‐random two liquid to obtain the corresponding binary interaction parameters. On this basis, azeotropic distillations with CPO as an entrainer were designed to separate EG and 1,2‐BDO with or without 1,2‐PDO. The complete separation processes, including the azeotropic distillation and CPO recovery process consisting of extraction with H2O and subsequent distillation, were simulated and optimized with Aspen Plus for both the EG‐1,2‐BDO binary mixture and the EG‐1,2‐BDO‐1,2‐PDO ternary mixture. The simulation results show that the azeotropic distillation method with CPO as an entrainer can effectively separate the mixture of EG‐1,2‐BDO and EG‐1,2‐BDO‐1,2‐PDO, achieving EG of 99.90% purity with 99.98% recovery and 1,2‐BDO of 99.30% purity with 99.45% recovery for the binary mixture, and achieving EG of 99.90% purity with 99.80% recovery, 1,2‐BDO of 99.35% purity with 99.35% recovery, and 1,2‐PDO of 90.59% purity with 94.38% recovery for the ternary mixture. These processes are promising for industrial application and can significantly improve the economy of non‐petroleum EG production.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cjce.24771</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9540-5534</orcidid><orcidid>https://orcid.org/0000-0002-9632-4602</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2023-07, Vol.101 (7), p.4217-4229
issn 0008-4034
1939-019X
language eng
recordid cdi_proquest_journals_2821654763
source Wiley Online Library All Journals
subjects 1,2‐butanediol
1,2‐propanediol
azeotropic distillation
Binary mixtures
Butanediol
Distillation
Entrainment
Ethylene glycol
Industrial applications
Interaction parameters
Liquid-vapor equilibrium
Octanol
Polyesters
Purity
Recovery
Separation
Thermodynamic models
vapour–liquid equilibrium
title Separation of ethylene glycol, 1,2‐butanediol and 1,2‐propanediol with azeotropic distillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20of%20ethylene%20glycol,%201,2%E2%80%90butanediol%20and%201,2%E2%80%90propanediol%20with%20azeotropic%20distillation&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Wang,%20Jia&rft.date=2023-07&rft.volume=101&rft.issue=7&rft.spage=4217&rft.epage=4229&rft.pages=4217-4229&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.24771&rft_dat=%3Cproquest_cross%3E2821654763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821654763&rft_id=info:pmid/&rfr_iscdi=true