Sea State from Single Optical Images: A Methodology to Derive Wind-Generated Ocean Waves from Cameras, Drones and Satellites
Sea state is a key variable in ocean and coastal dynamics. The sea state is either sparsely measured by wave buoys and satellites or modelled over large scales. Only a few attempts have been devoted to sea state measurements covering a large domain; in particular its estimation from optical images....
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-02, Vol.13 (4), p.679, Article 679 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sea state is a key variable in ocean and coastal dynamics. The sea state is either sparsely measured by wave buoys and satellites or modelled over large scales. Only a few attempts have been devoted to sea state measurements covering a large domain; in particular its estimation from optical images. With optical technologies becoming omnipresent, optical images offer incomparable spatial resolution from diverse sensors such as shore-based cameras, airborne drones (unmanned aerial vehicles/UAVs), or satellites. Here, we present a standalone methodology to derive the water surface elevation anomaly induced by wind-generated ocean waves from optical imagery. The methodology was tested on drone and satellite images and compared against ground truth. The results show a clear dependence on the relative azimuth view angle in relation to the wave crest. A simple correction is proposed to overcome this bias. Overall, the presented methodology offers a practical way of estimating ocean waves for a wide range of applications. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13040679 |