Flexible Hierarchical Co‐Doped NiS2@CNF‐CNT Electron Deficient Interlayer with Grass‐Roots Structure for Li–S Batteries
The key means to improve the performance of lithium–sulfur batteries (LSBs) is to reduce the internal resistance by building an electronic/ionic pathway and to accelerate the conversion kinetics of lithium polysulfides (LiPSs) through modulation of interface functions. Herein, inspired by a grass ro...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2023-06, Vol.13 (21), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Dai, Xin Lv, Guangjun Wu, Zhen Wang, Xu Liu, Yan Sun, Junjie Wang, Qichao Xiong, Xuyang Liu, Yongning Zhang, Chaofeng Xin, Sen Chen, Yuanzhen Zhou, Tengfei |
description | The key means to improve the performance of lithium–sulfur batteries (LSBs) is to reduce the internal resistance by building an electronic/ionic pathway and to accelerate the conversion kinetics of lithium polysulfides (LiPSs) through modulation of interface functions. Herein, inspired by a grass root system, a flexible hierarchical CNF‐CNT (carbon nanofiber‐carbon nanotube) membrane decorated with Co‐doped NiS2 nanoparticles (Co‐NiS2@CNF‐CNT) is designed as an interlayer for LSBs, in which the in situ grown CNTs (root hairs) are wound on CNF (roots). Density functional theory (DFT) calculations show that Co doping introduces electron‐deficient regions at the doping sites in NiS2, thus improving chemical adsorption and catalytic activities toward LiPSs. The cell pairs with the Co‐NiS2@CNF‐CNT interlayer exhibit a high rate performance of 951.4 mAh g−1 at 3 C, a reversible capacity of 944.1 mAh g−1 after 500 cycles at 0.2 C, and a prolonged cycle life of 3000 cycles at 5 C. More importantly, an areal capacity of 7.96 mAh cm−2 is achieved with a sulfur loading of 9.6 mg cm−2. This work provides a strategy for enhancing the electrochemical performance of LSBs by combining 3D hierarchical conductive skeletons and electron‐deficient functional adsorption and catalysis materials.
A bionic hierarchical fibrous carbon nanofiber‐carbon nanotube (CNF‐CNF) membrane with a root hair structure with Co‐doped NiS2 nanoparticles is designed for application as an interlayer of lithium–sulfur batteries. Well‐developed CNTs are grown between CNFs, improving the conductivity of the interlayer and the physical adsorption of lithium polysulfides. Electronic deficiencies introduced by co‐doping result in enhanced catalytic and chemisorption capabilities for lithium polysulfides. |
doi_str_mv | 10.1002/aenm.202300452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2821540513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821540513</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2332-6ac7c1da78499d3b03c2230728f47e182d1a4ede67c6f4a789dca503dd1d45ac3</originalsourceid><addsrcrecordid>eNo9kMtKw0AUhoMoWLRb1wOuU-eW286aXqFGsHU9TGdO6JQ0iZMptSv7CIJv2CcxpdKzORe-8x_O73kPBPcIxvRJQrnpUUwZxjygV16HhIT7Yczx9aVm9NbrNs0at8ETghnreN-jAr7MsgA0MWClVSujZIHS6nj4GVQ1aJSZOX1Os1E7SLMFGhagnK1KNIDcKAOlQ9PSgS3kHizaGbdCYyubpsXfq8o1aO7sVrmtBZRXFs3M8fA7Ry_StTsGmnvvJpdFA93_fOd9jIaLdOLP3sbTtD_za8oY9UOpIkW0jGKeJJotMVO0_TWicc4jIDHVRHLQEEYqzHmLJVrJADOtieaBVOzOezzr1rb63ELjxLra2rI9KWhMScBxQFhLJWdqZwrYi9qajbR7QbA4mSxOJouLyaI_zF4vHfsDQuR2mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821540513</pqid></control><display><type>article</type><title>Flexible Hierarchical Co‐Doped NiS2@CNF‐CNT Electron Deficient Interlayer with Grass‐Roots Structure for Li–S Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dai, Xin ; Lv, Guangjun ; Wu, Zhen ; Wang, Xu ; Liu, Yan ; Sun, Junjie ; Wang, Qichao ; Xiong, Xuyang ; Liu, Yongning ; Zhang, Chaofeng ; Xin, Sen ; Chen, Yuanzhen ; Zhou, Tengfei</creator><creatorcontrib>Dai, Xin ; Lv, Guangjun ; Wu, Zhen ; Wang, Xu ; Liu, Yan ; Sun, Junjie ; Wang, Qichao ; Xiong, Xuyang ; Liu, Yongning ; Zhang, Chaofeng ; Xin, Sen ; Chen, Yuanzhen ; Zhou, Tengfei</creatorcontrib><description>The key means to improve the performance of lithium–sulfur batteries (LSBs) is to reduce the internal resistance by building an electronic/ionic pathway and to accelerate the conversion kinetics of lithium polysulfides (LiPSs) through modulation of interface functions. Herein, inspired by a grass root system, a flexible hierarchical CNF‐CNT (carbon nanofiber‐carbon nanotube) membrane decorated with Co‐doped NiS2 nanoparticles (Co‐NiS2@CNF‐CNT) is designed as an interlayer for LSBs, in which the in situ grown CNTs (root hairs) are wound on CNF (roots). Density functional theory (DFT) calculations show that Co doping introduces electron‐deficient regions at the doping sites in NiS2, thus improving chemical adsorption and catalytic activities toward LiPSs. The cell pairs with the Co‐NiS2@CNF‐CNT interlayer exhibit a high rate performance of 951.4 mAh g−1 at 3 C, a reversible capacity of 944.1 mAh g−1 after 500 cycles at 0.2 C, and a prolonged cycle life of 3000 cycles at 5 C. More importantly, an areal capacity of 7.96 mAh cm−2 is achieved with a sulfur loading of 9.6 mg cm−2. This work provides a strategy for enhancing the electrochemical performance of LSBs by combining 3D hierarchical conductive skeletons and electron‐deficient functional adsorption and catalysis materials.
A bionic hierarchical fibrous carbon nanofiber‐carbon nanotube (CNF‐CNF) membrane with a root hair structure with Co‐doped NiS2 nanoparticles is designed for application as an interlayer of lithium–sulfur batteries. Well‐developed CNTs are grown between CNFs, improving the conductivity of the interlayer and the physical adsorption of lithium polysulfides. Electronic deficiencies introduced by co‐doping result in enhanced catalytic and chemisorption capabilities for lithium polysulfides.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202300452</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Carbon fibers ; Carbon nanotubes ; Catalysis ; co‐doped NiS2 ; Density functional theory ; Doping ; Electrochemical analysis ; electron deficiencies ; functional interlayers ; hierarchical ; Interlayers ; Lithium sulfur batteries ; Li–S batteries ; Nanoparticles ; Performance enhancement</subject><ispartof>Advanced energy materials, 2023-06, Vol.13 (21), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7364-0434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202300452$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202300452$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Dai, Xin</creatorcontrib><creatorcontrib>Lv, Guangjun</creatorcontrib><creatorcontrib>Wu, Zhen</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Sun, Junjie</creatorcontrib><creatorcontrib>Wang, Qichao</creatorcontrib><creatorcontrib>Xiong, Xuyang</creatorcontrib><creatorcontrib>Liu, Yongning</creatorcontrib><creatorcontrib>Zhang, Chaofeng</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Chen, Yuanzhen</creatorcontrib><creatorcontrib>Zhou, Tengfei</creatorcontrib><title>Flexible Hierarchical Co‐Doped NiS2@CNF‐CNT Electron Deficient Interlayer with Grass‐Roots Structure for Li–S Batteries</title><title>Advanced energy materials</title><description>The key means to improve the performance of lithium–sulfur batteries (LSBs) is to reduce the internal resistance by building an electronic/ionic pathway and to accelerate the conversion kinetics of lithium polysulfides (LiPSs) through modulation of interface functions. Herein, inspired by a grass root system, a flexible hierarchical CNF‐CNT (carbon nanofiber‐carbon nanotube) membrane decorated with Co‐doped NiS2 nanoparticles (Co‐NiS2@CNF‐CNT) is designed as an interlayer for LSBs, in which the in situ grown CNTs (root hairs) are wound on CNF (roots). Density functional theory (DFT) calculations show that Co doping introduces electron‐deficient regions at the doping sites in NiS2, thus improving chemical adsorption and catalytic activities toward LiPSs. The cell pairs with the Co‐NiS2@CNF‐CNT interlayer exhibit a high rate performance of 951.4 mAh g−1 at 3 C, a reversible capacity of 944.1 mAh g−1 after 500 cycles at 0.2 C, and a prolonged cycle life of 3000 cycles at 5 C. More importantly, an areal capacity of 7.96 mAh cm−2 is achieved with a sulfur loading of 9.6 mg cm−2. This work provides a strategy for enhancing the electrochemical performance of LSBs by combining 3D hierarchical conductive skeletons and electron‐deficient functional adsorption and catalysis materials.
A bionic hierarchical fibrous carbon nanofiber‐carbon nanotube (CNF‐CNF) membrane with a root hair structure with Co‐doped NiS2 nanoparticles is designed for application as an interlayer of lithium–sulfur batteries. Well‐developed CNTs are grown between CNFs, improving the conductivity of the interlayer and the physical adsorption of lithium polysulfides. Electronic deficiencies introduced by co‐doping result in enhanced catalytic and chemisorption capabilities for lithium polysulfides.</description><subject>Adsorption</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>co‐doped NiS2</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>electron deficiencies</subject><subject>functional interlayers</subject><subject>hierarchical</subject><subject>Interlayers</subject><subject>Lithium sulfur batteries</subject><subject>Li–S batteries</subject><subject>Nanoparticles</subject><subject>Performance enhancement</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKw0AUhoMoWLRb1wOuU-eW286aXqFGsHU9TGdO6JQ0iZMptSv7CIJv2CcxpdKzORe-8x_O73kPBPcIxvRJQrnpUUwZxjygV16HhIT7Yczx9aVm9NbrNs0at8ETghnreN-jAr7MsgA0MWClVSujZIHS6nj4GVQ1aJSZOX1Os1E7SLMFGhagnK1KNIDcKAOlQ9PSgS3kHizaGbdCYyubpsXfq8o1aO7sVrmtBZRXFs3M8fA7Ry_StTsGmnvvJpdFA93_fOd9jIaLdOLP3sbTtD_za8oY9UOpIkW0jGKeJJotMVO0_TWicc4jIDHVRHLQEEYqzHmLJVrJADOtieaBVOzOezzr1rb63ELjxLra2rI9KWhMScBxQFhLJWdqZwrYi9qajbR7QbA4mSxOJouLyaI_zF4vHfsDQuR2mg</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>Dai, Xin</creator><creator>Lv, Guangjun</creator><creator>Wu, Zhen</creator><creator>Wang, Xu</creator><creator>Liu, Yan</creator><creator>Sun, Junjie</creator><creator>Wang, Qichao</creator><creator>Xiong, Xuyang</creator><creator>Liu, Yongning</creator><creator>Zhang, Chaofeng</creator><creator>Xin, Sen</creator><creator>Chen, Yuanzhen</creator><creator>Zhou, Tengfei</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7364-0434</orcidid></search><sort><creationdate>20230602</creationdate><title>Flexible Hierarchical Co‐Doped NiS2@CNF‐CNT Electron Deficient Interlayer with Grass‐Roots Structure for Li–S Batteries</title><author>Dai, Xin ; Lv, Guangjun ; Wu, Zhen ; Wang, Xu ; Liu, Yan ; Sun, Junjie ; Wang, Qichao ; Xiong, Xuyang ; Liu, Yongning ; Zhang, Chaofeng ; Xin, Sen ; Chen, Yuanzhen ; Zhou, Tengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2332-6ac7c1da78499d3b03c2230728f47e182d1a4ede67c6f4a789dca503dd1d45ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>co‐doped NiS2</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>electron deficiencies</topic><topic>functional interlayers</topic><topic>hierarchical</topic><topic>Interlayers</topic><topic>Lithium sulfur batteries</topic><topic>Li–S batteries</topic><topic>Nanoparticles</topic><topic>Performance enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Xin</creatorcontrib><creatorcontrib>Lv, Guangjun</creatorcontrib><creatorcontrib>Wu, Zhen</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Sun, Junjie</creatorcontrib><creatorcontrib>Wang, Qichao</creatorcontrib><creatorcontrib>Xiong, Xuyang</creatorcontrib><creatorcontrib>Liu, Yongning</creatorcontrib><creatorcontrib>Zhang, Chaofeng</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Chen, Yuanzhen</creatorcontrib><creatorcontrib>Zhou, Tengfei</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Xin</au><au>Lv, Guangjun</au><au>Wu, Zhen</au><au>Wang, Xu</au><au>Liu, Yan</au><au>Sun, Junjie</au><au>Wang, Qichao</au><au>Xiong, Xuyang</au><au>Liu, Yongning</au><au>Zhang, Chaofeng</au><au>Xin, Sen</au><au>Chen, Yuanzhen</au><au>Zhou, Tengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Hierarchical Co‐Doped NiS2@CNF‐CNT Electron Deficient Interlayer with Grass‐Roots Structure for Li–S Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2023-06-02</date><risdate>2023</risdate><volume>13</volume><issue>21</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The key means to improve the performance of lithium–sulfur batteries (LSBs) is to reduce the internal resistance by building an electronic/ionic pathway and to accelerate the conversion kinetics of lithium polysulfides (LiPSs) through modulation of interface functions. Herein, inspired by a grass root system, a flexible hierarchical CNF‐CNT (carbon nanofiber‐carbon nanotube) membrane decorated with Co‐doped NiS2 nanoparticles (Co‐NiS2@CNF‐CNT) is designed as an interlayer for LSBs, in which the in situ grown CNTs (root hairs) are wound on CNF (roots). Density functional theory (DFT) calculations show that Co doping introduces electron‐deficient regions at the doping sites in NiS2, thus improving chemical adsorption and catalytic activities toward LiPSs. The cell pairs with the Co‐NiS2@CNF‐CNT interlayer exhibit a high rate performance of 951.4 mAh g−1 at 3 C, a reversible capacity of 944.1 mAh g−1 after 500 cycles at 0.2 C, and a prolonged cycle life of 3000 cycles at 5 C. More importantly, an areal capacity of 7.96 mAh cm−2 is achieved with a sulfur loading of 9.6 mg cm−2. This work provides a strategy for enhancing the electrochemical performance of LSBs by combining 3D hierarchical conductive skeletons and electron‐deficient functional adsorption and catalysis materials.
A bionic hierarchical fibrous carbon nanofiber‐carbon nanotube (CNF‐CNF) membrane with a root hair structure with Co‐doped NiS2 nanoparticles is designed for application as an interlayer of lithium–sulfur batteries. Well‐developed CNTs are grown between CNFs, improving the conductivity of the interlayer and the physical adsorption of lithium polysulfides. Electronic deficiencies introduced by co‐doping result in enhanced catalytic and chemisorption capabilities for lithium polysulfides.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202300452</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7364-0434</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-06, Vol.13 (21), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2821540513 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adsorption Carbon fibers Carbon nanotubes Catalysis co‐doped NiS2 Density functional theory Doping Electrochemical analysis electron deficiencies functional interlayers hierarchical Interlayers Lithium sulfur batteries Li–S batteries Nanoparticles Performance enhancement |
title | Flexible Hierarchical Co‐Doped NiS2@CNF‐CNT Electron Deficient Interlayer with Grass‐Roots Structure for Li–S Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Hierarchical%20Co%E2%80%90Doped%20NiS2@CNF%E2%80%90CNT%20Electron%20Deficient%20Interlayer%20with%20Grass%E2%80%90Roots%20Structure%20for%20Li%E2%80%93S%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Dai,%20Xin&rft.date=2023-06-02&rft.volume=13&rft.issue=21&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202300452&rft_dat=%3Cproquest_wiley%3E2821540513%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821540513&rft_id=info:pmid/&rfr_iscdi=true |