Flexible Hierarchical Co‐Doped NiS2@CNF‐CNT Electron Deficient Interlayer with Grass‐Roots Structure for Li–S Batteries

The key means to improve the performance of lithium–sulfur batteries (LSBs) is to reduce the internal resistance by building an electronic/ionic pathway and to accelerate the conversion kinetics of lithium polysulfides (LiPSs) through modulation of interface functions. Herein, inspired by a grass ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-06, Vol.13 (21), p.n/a
Hauptverfasser: Dai, Xin, Lv, Guangjun, Wu, Zhen, Wang, Xu, Liu, Yan, Sun, Junjie, Wang, Qichao, Xiong, Xuyang, Liu, Yongning, Zhang, Chaofeng, Xin, Sen, Chen, Yuanzhen, Zhou, Tengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title Advanced energy materials
container_volume 13
creator Dai, Xin
Lv, Guangjun
Wu, Zhen
Wang, Xu
Liu, Yan
Sun, Junjie
Wang, Qichao
Xiong, Xuyang
Liu, Yongning
Zhang, Chaofeng
Xin, Sen
Chen, Yuanzhen
Zhou, Tengfei
description The key means to improve the performance of lithium–sulfur batteries (LSBs) is to reduce the internal resistance by building an electronic/ionic pathway and to accelerate the conversion kinetics of lithium polysulfides (LiPSs) through modulation of interface functions. Herein, inspired by a grass root system, a flexible hierarchical CNF‐CNT (carbon nanofiber‐carbon nanotube) membrane decorated with Co‐doped NiS2 nanoparticles (Co‐NiS2@CNF‐CNT) is designed as an interlayer for LSBs, in which the in situ grown CNTs (root hairs) are wound on CNF (roots). Density functional theory (DFT) calculations show that Co doping introduces electron‐deficient regions at the doping sites in NiS2, thus improving chemical adsorption and catalytic activities toward LiPSs. The cell pairs with the Co‐NiS2@CNF‐CNT interlayer exhibit a high rate performance of 951.4 mAh g−1 at 3 C, a reversible capacity of 944.1 mAh g−1 after 500 cycles at 0.2 C, and a prolonged cycle life of 3000 cycles at 5 C. More importantly, an areal capacity of 7.96 mAh cm−2 is achieved with a sulfur loading of 9.6 mg cm−2. This work provides a strategy for enhancing the electrochemical performance of LSBs by combining 3D hierarchical conductive skeletons and electron‐deficient functional adsorption and catalysis materials. A bionic hierarchical fibrous carbon nanofiber‐carbon nanotube (CNF‐CNF) membrane with a root hair structure with Co‐doped NiS2 nanoparticles is designed for application as an interlayer of lithium–sulfur batteries. Well‐developed CNTs are grown between CNFs, improving the conductivity of the interlayer and the physical adsorption of lithium polysulfides. Electronic deficiencies introduced by co‐doping result in enhanced catalytic and chemisorption capabilities for lithium polysulfides.
doi_str_mv 10.1002/aenm.202300452
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2821540513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821540513</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2332-6ac7c1da78499d3b03c2230728f47e182d1a4ede67c6f4a789dca503dd1d45ac3</originalsourceid><addsrcrecordid>eNo9kMtKw0AUhoMoWLRb1wOuU-eW286aXqFGsHU9TGdO6JQ0iZMptSv7CIJv2CcxpdKzORe-8x_O73kPBPcIxvRJQrnpUUwZxjygV16HhIT7Yczx9aVm9NbrNs0at8ETghnreN-jAr7MsgA0MWClVSujZIHS6nj4GVQ1aJSZOX1Os1E7SLMFGhagnK1KNIDcKAOlQ9PSgS3kHizaGbdCYyubpsXfq8o1aO7sVrmtBZRXFs3M8fA7Ry_StTsGmnvvJpdFA93_fOd9jIaLdOLP3sbTtD_za8oY9UOpIkW0jGKeJJotMVO0_TWicc4jIDHVRHLQEEYqzHmLJVrJADOtieaBVOzOezzr1rb63ELjxLra2rI9KWhMScBxQFhLJWdqZwrYi9qajbR7QbA4mSxOJouLyaI_zF4vHfsDQuR2mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821540513</pqid></control><display><type>article</type><title>Flexible Hierarchical Co‐Doped NiS2@CNF‐CNT Electron Deficient Interlayer with Grass‐Roots Structure for Li–S Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dai, Xin ; Lv, Guangjun ; Wu, Zhen ; Wang, Xu ; Liu, Yan ; Sun, Junjie ; Wang, Qichao ; Xiong, Xuyang ; Liu, Yongning ; Zhang, Chaofeng ; Xin, Sen ; Chen, Yuanzhen ; Zhou, Tengfei</creator><creatorcontrib>Dai, Xin ; Lv, Guangjun ; Wu, Zhen ; Wang, Xu ; Liu, Yan ; Sun, Junjie ; Wang, Qichao ; Xiong, Xuyang ; Liu, Yongning ; Zhang, Chaofeng ; Xin, Sen ; Chen, Yuanzhen ; Zhou, Tengfei</creatorcontrib><description>The key means to improve the performance of lithium–sulfur batteries (LSBs) is to reduce the internal resistance by building an electronic/ionic pathway and to accelerate the conversion kinetics of lithium polysulfides (LiPSs) through modulation of interface functions. Herein, inspired by a grass root system, a flexible hierarchical CNF‐CNT (carbon nanofiber‐carbon nanotube) membrane decorated with Co‐doped NiS2 nanoparticles (Co‐NiS2@CNF‐CNT) is designed as an interlayer for LSBs, in which the in situ grown CNTs (root hairs) are wound on CNF (roots). Density functional theory (DFT) calculations show that Co doping introduces electron‐deficient regions at the doping sites in NiS2, thus improving chemical adsorption and catalytic activities toward LiPSs. The cell pairs with the Co‐NiS2@CNF‐CNT interlayer exhibit a high rate performance of 951.4 mAh g−1 at 3 C, a reversible capacity of 944.1 mAh g−1 after 500 cycles at 0.2 C, and a prolonged cycle life of 3000 cycles at 5 C. More importantly, an areal capacity of 7.96 mAh cm−2 is achieved with a sulfur loading of 9.6 mg cm−2. This work provides a strategy for enhancing the electrochemical performance of LSBs by combining 3D hierarchical conductive skeletons and electron‐deficient functional adsorption and catalysis materials. A bionic hierarchical fibrous carbon nanofiber‐carbon nanotube (CNF‐CNF) membrane with a root hair structure with Co‐doped NiS2 nanoparticles is designed for application as an interlayer of lithium–sulfur batteries. Well‐developed CNTs are grown between CNFs, improving the conductivity of the interlayer and the physical adsorption of lithium polysulfides. Electronic deficiencies introduced by co‐doping result in enhanced catalytic and chemisorption capabilities for lithium polysulfides.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202300452</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Carbon fibers ; Carbon nanotubes ; Catalysis ; co‐doped NiS2 ; Density functional theory ; Doping ; Electrochemical analysis ; electron deficiencies ; functional interlayers ; hierarchical ; Interlayers ; Lithium sulfur batteries ; Li–S batteries ; Nanoparticles ; Performance enhancement</subject><ispartof>Advanced energy materials, 2023-06, Vol.13 (21), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7364-0434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202300452$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202300452$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Dai, Xin</creatorcontrib><creatorcontrib>Lv, Guangjun</creatorcontrib><creatorcontrib>Wu, Zhen</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Sun, Junjie</creatorcontrib><creatorcontrib>Wang, Qichao</creatorcontrib><creatorcontrib>Xiong, Xuyang</creatorcontrib><creatorcontrib>Liu, Yongning</creatorcontrib><creatorcontrib>Zhang, Chaofeng</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Chen, Yuanzhen</creatorcontrib><creatorcontrib>Zhou, Tengfei</creatorcontrib><title>Flexible Hierarchical Co‐Doped NiS2@CNF‐CNT Electron Deficient Interlayer with Grass‐Roots Structure for Li–S Batteries</title><title>Advanced energy materials</title><description>The key means to improve the performance of lithium–sulfur batteries (LSBs) is to reduce the internal resistance by building an electronic/ionic pathway and to accelerate the conversion kinetics of lithium polysulfides (LiPSs) through modulation of interface functions. Herein, inspired by a grass root system, a flexible hierarchical CNF‐CNT (carbon nanofiber‐carbon nanotube) membrane decorated with Co‐doped NiS2 nanoparticles (Co‐NiS2@CNF‐CNT) is designed as an interlayer for LSBs, in which the in situ grown CNTs (root hairs) are wound on CNF (roots). Density functional theory (DFT) calculations show that Co doping introduces electron‐deficient regions at the doping sites in NiS2, thus improving chemical adsorption and catalytic activities toward LiPSs. The cell pairs with the Co‐NiS2@CNF‐CNT interlayer exhibit a high rate performance of 951.4 mAh g−1 at 3 C, a reversible capacity of 944.1 mAh g−1 after 500 cycles at 0.2 C, and a prolonged cycle life of 3000 cycles at 5 C. More importantly, an areal capacity of 7.96 mAh cm−2 is achieved with a sulfur loading of 9.6 mg cm−2. This work provides a strategy for enhancing the electrochemical performance of LSBs by combining 3D hierarchical conductive skeletons and electron‐deficient functional adsorption and catalysis materials. A bionic hierarchical fibrous carbon nanofiber‐carbon nanotube (CNF‐CNF) membrane with a root hair structure with Co‐doped NiS2 nanoparticles is designed for application as an interlayer of lithium–sulfur batteries. Well‐developed CNTs are grown between CNFs, improving the conductivity of the interlayer and the physical adsorption of lithium polysulfides. Electronic deficiencies introduced by co‐doping result in enhanced catalytic and chemisorption capabilities for lithium polysulfides.</description><subject>Adsorption</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>co‐doped NiS2</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>electron deficiencies</subject><subject>functional interlayers</subject><subject>hierarchical</subject><subject>Interlayers</subject><subject>Lithium sulfur batteries</subject><subject>Li–S batteries</subject><subject>Nanoparticles</subject><subject>Performance enhancement</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKw0AUhoMoWLRb1wOuU-eW286aXqFGsHU9TGdO6JQ0iZMptSv7CIJv2CcxpdKzORe-8x_O73kPBPcIxvRJQrnpUUwZxjygV16HhIT7Yczx9aVm9NbrNs0at8ETghnreN-jAr7MsgA0MWClVSujZIHS6nj4GVQ1aJSZOX1Os1E7SLMFGhagnK1KNIDcKAOlQ9PSgS3kHizaGbdCYyubpsXfq8o1aO7sVrmtBZRXFs3M8fA7Ry_StTsGmnvvJpdFA93_fOd9jIaLdOLP3sbTtD_za8oY9UOpIkW0jGKeJJotMVO0_TWicc4jIDHVRHLQEEYqzHmLJVrJADOtieaBVOzOezzr1rb63ELjxLra2rI9KWhMScBxQFhLJWdqZwrYi9qajbR7QbA4mSxOJouLyaI_zF4vHfsDQuR2mg</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>Dai, Xin</creator><creator>Lv, Guangjun</creator><creator>Wu, Zhen</creator><creator>Wang, Xu</creator><creator>Liu, Yan</creator><creator>Sun, Junjie</creator><creator>Wang, Qichao</creator><creator>Xiong, Xuyang</creator><creator>Liu, Yongning</creator><creator>Zhang, Chaofeng</creator><creator>Xin, Sen</creator><creator>Chen, Yuanzhen</creator><creator>Zhou, Tengfei</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7364-0434</orcidid></search><sort><creationdate>20230602</creationdate><title>Flexible Hierarchical Co‐Doped NiS2@CNF‐CNT Electron Deficient Interlayer with Grass‐Roots Structure for Li–S Batteries</title><author>Dai, Xin ; Lv, Guangjun ; Wu, Zhen ; Wang, Xu ; Liu, Yan ; Sun, Junjie ; Wang, Qichao ; Xiong, Xuyang ; Liu, Yongning ; Zhang, Chaofeng ; Xin, Sen ; Chen, Yuanzhen ; Zhou, Tengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2332-6ac7c1da78499d3b03c2230728f47e182d1a4ede67c6f4a789dca503dd1d45ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>co‐doped NiS2</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>electron deficiencies</topic><topic>functional interlayers</topic><topic>hierarchical</topic><topic>Interlayers</topic><topic>Lithium sulfur batteries</topic><topic>Li–S batteries</topic><topic>Nanoparticles</topic><topic>Performance enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Xin</creatorcontrib><creatorcontrib>Lv, Guangjun</creatorcontrib><creatorcontrib>Wu, Zhen</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Sun, Junjie</creatorcontrib><creatorcontrib>Wang, Qichao</creatorcontrib><creatorcontrib>Xiong, Xuyang</creatorcontrib><creatorcontrib>Liu, Yongning</creatorcontrib><creatorcontrib>Zhang, Chaofeng</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Chen, Yuanzhen</creatorcontrib><creatorcontrib>Zhou, Tengfei</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Xin</au><au>Lv, Guangjun</au><au>Wu, Zhen</au><au>Wang, Xu</au><au>Liu, Yan</au><au>Sun, Junjie</au><au>Wang, Qichao</au><au>Xiong, Xuyang</au><au>Liu, Yongning</au><au>Zhang, Chaofeng</au><au>Xin, Sen</au><au>Chen, Yuanzhen</au><au>Zhou, Tengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Hierarchical Co‐Doped NiS2@CNF‐CNT Electron Deficient Interlayer with Grass‐Roots Structure for Li–S Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2023-06-02</date><risdate>2023</risdate><volume>13</volume><issue>21</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The key means to improve the performance of lithium–sulfur batteries (LSBs) is to reduce the internal resistance by building an electronic/ionic pathway and to accelerate the conversion kinetics of lithium polysulfides (LiPSs) through modulation of interface functions. Herein, inspired by a grass root system, a flexible hierarchical CNF‐CNT (carbon nanofiber‐carbon nanotube) membrane decorated with Co‐doped NiS2 nanoparticles (Co‐NiS2@CNF‐CNT) is designed as an interlayer for LSBs, in which the in situ grown CNTs (root hairs) are wound on CNF (roots). Density functional theory (DFT) calculations show that Co doping introduces electron‐deficient regions at the doping sites in NiS2, thus improving chemical adsorption and catalytic activities toward LiPSs. The cell pairs with the Co‐NiS2@CNF‐CNT interlayer exhibit a high rate performance of 951.4 mAh g−1 at 3 C, a reversible capacity of 944.1 mAh g−1 after 500 cycles at 0.2 C, and a prolonged cycle life of 3000 cycles at 5 C. More importantly, an areal capacity of 7.96 mAh cm−2 is achieved with a sulfur loading of 9.6 mg cm−2. This work provides a strategy for enhancing the electrochemical performance of LSBs by combining 3D hierarchical conductive skeletons and electron‐deficient functional adsorption and catalysis materials. A bionic hierarchical fibrous carbon nanofiber‐carbon nanotube (CNF‐CNF) membrane with a root hair structure with Co‐doped NiS2 nanoparticles is designed for application as an interlayer of lithium–sulfur batteries. Well‐developed CNTs are grown between CNFs, improving the conductivity of the interlayer and the physical adsorption of lithium polysulfides. Electronic deficiencies introduced by co‐doping result in enhanced catalytic and chemisorption capabilities for lithium polysulfides.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202300452</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7364-0434</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-06, Vol.13 (21), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2821540513
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
Carbon fibers
Carbon nanotubes
Catalysis
co‐doped NiS2
Density functional theory
Doping
Electrochemical analysis
electron deficiencies
functional interlayers
hierarchical
Interlayers
Lithium sulfur batteries
Li–S batteries
Nanoparticles
Performance enhancement
title Flexible Hierarchical Co‐Doped NiS2@CNF‐CNT Electron Deficient Interlayer with Grass‐Roots Structure for Li–S Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Hierarchical%20Co%E2%80%90Doped%20NiS2@CNF%E2%80%90CNT%20Electron%20Deficient%20Interlayer%20with%20Grass%E2%80%90Roots%20Structure%20for%20Li%E2%80%93S%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Dai,%20Xin&rft.date=2023-06-02&rft.volume=13&rft.issue=21&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202300452&rft_dat=%3Cproquest_wiley%3E2821540513%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821540513&rft_id=info:pmid/&rfr_iscdi=true