Robust H∞ tracking of linear discrete‐time systems using Q‐learning

This paper deals with a robust H∞$$ {H}_{\infty } $$ tracking problem with a discounted factor. A new auxiliary system is established in terms of norm‐bounded time‐varying uncertainties. It is shown that the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system solves the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2023-07, Vol.33 (10), p.5604-5623
Hauptverfasser: Valadbeigi, Amir Parviz, Shu, Zhan, Khaki Sedigh, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5623
container_issue 10
container_start_page 5604
container_title International journal of robust and nonlinear control
container_volume 33
creator Valadbeigi, Amir Parviz
Shu, Zhan
Khaki Sedigh, Ali
description This paper deals with a robust H∞$$ {H}_{\infty } $$ tracking problem with a discounted factor. A new auxiliary system is established in terms of norm‐bounded time‐varying uncertainties. It is shown that the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system solves the original problem. Then, the new robust discounted H∞$$ {H}_{\infty } $$ tracking problem is represented as a well‐known zero‐sum game problem. Moreover, the robust tracking Bellman equation and the robust tracking Algebraic Riccati equation (RTARE) are inferred. A lower bound of a discounted factor for stability is obtained to assure the stability of the closed‐loop system. Based on the auxiliary system, the system is reshaped in a new structure that is applicable to Reinforcement Learning methods. Finally, an online Q‐learning algorithm without the knowledge of system matrices is proposed to solve the algebraic Riccati equation associated with the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system. Simulation results are given to verify the effectiveness and merits of the proposed method.
doi_str_mv 10.1002/rnc.6662
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821538929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821538929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2082-591e4cd1b73ed80cfd9cf175ab6e07f2befe36ce9c9b82840cfcdc5f778620b83</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmqRfyVGKuguL4qLn0KYTydqPNWmR3jx69Al8uH0SU-vVUybJjxnmj9A5JQtKCLuyjVokScIO0IwSIQLKQnE41pEIuGDhMTpxbkuI_2PRDK02bdG7Di_3n9-4s7l6Nc0LbjWuTAO5xaVxykIH-4-vztSA3eA6qB3u3ege_XPlWeMvp-hI55WDs79zjp5vb56yZbB-uFtl1-tAMcJZEAsKkSppkYZQcqJ0KZSmaZwXCZBUswI0hIkCoUTBGY-8UKWKdZryhJGCh3N0MfXd2fatB9fJbdvbxo-UjDMah35L4dXlpJRtnbOg5c6aOreDpESOQUkflByD8jSY6LupYPjXyc199ut_ABDzbRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821538929</pqid></control><display><type>article</type><title>Robust H∞ tracking of linear discrete‐time systems using Q‐learning</title><source>Access via Wiley Online Library</source><creator>Valadbeigi, Amir Parviz ; Shu, Zhan ; Khaki Sedigh, Ali</creator><creatorcontrib>Valadbeigi, Amir Parviz ; Shu, Zhan ; Khaki Sedigh, Ali</creatorcontrib><description>This paper deals with a robust H∞$$ {H}_{\infty } $$ tracking problem with a discounted factor. A new auxiliary system is established in terms of norm‐bounded time‐varying uncertainties. It is shown that the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system solves the original problem. Then, the new robust discounted H∞$$ {H}_{\infty } $$ tracking problem is represented as a well‐known zero‐sum game problem. Moreover, the robust tracking Bellman equation and the robust tracking Algebraic Riccati equation (RTARE) are inferred. A lower bound of a discounted factor for stability is obtained to assure the stability of the closed‐loop system. Based on the auxiliary system, the system is reshaped in a new structure that is applicable to Reinforcement Learning methods. Finally, an online Q‐learning algorithm without the knowledge of system matrices is proposed to solve the algebraic Riccati equation associated with the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system. Simulation results are given to verify the effectiveness and merits of the proposed method.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6662</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algebra ; Algorithms ; auxiliary system ; discounted factor ; Discrete time systems ; H infinity ; Lower bounds ; Machine learning ; Q‐learning ; Riccati equation ; robust H∞$$ {H}_{\infty } $$ tracking ; Robustness ; Stability ; Tracking problem</subject><ispartof>International journal of robust and nonlinear control, 2023-07, Vol.33 (10), p.5604-5623</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2082-591e4cd1b73ed80cfd9cf175ab6e07f2befe36ce9c9b82840cfcdc5f778620b83</citedby><cites>FETCH-LOGICAL-c2082-591e4cd1b73ed80cfd9cf175ab6e07f2befe36ce9c9b82840cfcdc5f778620b83</cites><orcidid>0000-0002-3508-1598 ; 0000-0001-6702-0063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6662$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6662$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Valadbeigi, Amir Parviz</creatorcontrib><creatorcontrib>Shu, Zhan</creatorcontrib><creatorcontrib>Khaki Sedigh, Ali</creatorcontrib><title>Robust H∞ tracking of linear discrete‐time systems using Q‐learning</title><title>International journal of robust and nonlinear control</title><description>This paper deals with a robust H∞$$ {H}_{\infty } $$ tracking problem with a discounted factor. A new auxiliary system is established in terms of norm‐bounded time‐varying uncertainties. It is shown that the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system solves the original problem. Then, the new robust discounted H∞$$ {H}_{\infty } $$ tracking problem is represented as a well‐known zero‐sum game problem. Moreover, the robust tracking Bellman equation and the robust tracking Algebraic Riccati equation (RTARE) are inferred. A lower bound of a discounted factor for stability is obtained to assure the stability of the closed‐loop system. Based on the auxiliary system, the system is reshaped in a new structure that is applicable to Reinforcement Learning methods. Finally, an online Q‐learning algorithm without the knowledge of system matrices is proposed to solve the algebraic Riccati equation associated with the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system. Simulation results are given to verify the effectiveness and merits of the proposed method.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>auxiliary system</subject><subject>discounted factor</subject><subject>Discrete time systems</subject><subject>H infinity</subject><subject>Lower bounds</subject><subject>Machine learning</subject><subject>Q‐learning</subject><subject>Riccati equation</subject><subject>robust H∞$$ {H}_{\infty } $$ tracking</subject><subject>Robustness</subject><subject>Stability</subject><subject>Tracking problem</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmqRfyVGKuguL4qLn0KYTydqPNWmR3jx69Al8uH0SU-vVUybJjxnmj9A5JQtKCLuyjVokScIO0IwSIQLKQnE41pEIuGDhMTpxbkuI_2PRDK02bdG7Di_3n9-4s7l6Nc0LbjWuTAO5xaVxykIH-4-vztSA3eA6qB3u3ege_XPlWeMvp-hI55WDs79zjp5vb56yZbB-uFtl1-tAMcJZEAsKkSppkYZQcqJ0KZSmaZwXCZBUswI0hIkCoUTBGY-8UKWKdZryhJGCh3N0MfXd2fatB9fJbdvbxo-UjDMah35L4dXlpJRtnbOg5c6aOreDpESOQUkflByD8jSY6LupYPjXyc199ut_ABDzbRc</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Valadbeigi, Amir Parviz</creator><creator>Shu, Zhan</creator><creator>Khaki Sedigh, Ali</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3508-1598</orcidid><orcidid>https://orcid.org/0000-0001-6702-0063</orcidid></search><sort><creationdate>20230710</creationdate><title>Robust H∞ tracking of linear discrete‐time systems using Q‐learning</title><author>Valadbeigi, Amir Parviz ; Shu, Zhan ; Khaki Sedigh, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2082-591e4cd1b73ed80cfd9cf175ab6e07f2befe36ce9c9b82840cfcdc5f778620b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>auxiliary system</topic><topic>discounted factor</topic><topic>Discrete time systems</topic><topic>H infinity</topic><topic>Lower bounds</topic><topic>Machine learning</topic><topic>Q‐learning</topic><topic>Riccati equation</topic><topic>robust H∞$$ {H}_{\infty } $$ tracking</topic><topic>Robustness</topic><topic>Stability</topic><topic>Tracking problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valadbeigi, Amir Parviz</creatorcontrib><creatorcontrib>Shu, Zhan</creatorcontrib><creatorcontrib>Khaki Sedigh, Ali</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valadbeigi, Amir Parviz</au><au>Shu, Zhan</au><au>Khaki Sedigh, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust H∞ tracking of linear discrete‐time systems using Q‐learning</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2023-07-10</date><risdate>2023</risdate><volume>33</volume><issue>10</issue><spage>5604</spage><epage>5623</epage><pages>5604-5623</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This paper deals with a robust H∞$$ {H}_{\infty } $$ tracking problem with a discounted factor. A new auxiliary system is established in terms of norm‐bounded time‐varying uncertainties. It is shown that the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system solves the original problem. Then, the new robust discounted H∞$$ {H}_{\infty } $$ tracking problem is represented as a well‐known zero‐sum game problem. Moreover, the robust tracking Bellman equation and the robust tracking Algebraic Riccati equation (RTARE) are inferred. A lower bound of a discounted factor for stability is obtained to assure the stability of the closed‐loop system. Based on the auxiliary system, the system is reshaped in a new structure that is applicable to Reinforcement Learning methods. Finally, an online Q‐learning algorithm without the knowledge of system matrices is proposed to solve the algebraic Riccati equation associated with the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system. Simulation results are given to verify the effectiveness and merits of the proposed method.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/rnc.6662</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3508-1598</orcidid><orcidid>https://orcid.org/0000-0001-6702-0063</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2023-07, Vol.33 (10), p.5604-5623
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2821538929
source Access via Wiley Online Library
subjects Algebra
Algorithms
auxiliary system
discounted factor
Discrete time systems
H infinity
Lower bounds
Machine learning
Q‐learning
Riccati equation
robust H∞$$ {H}_{\infty } $$ tracking
Robustness
Stability
Tracking problem
title Robust H∞ tracking of linear discrete‐time systems using Q‐learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20H%E2%88%9E%20tracking%20of%20linear%20discrete%E2%80%90time%20systems%20using%20Q%E2%80%90learning&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Valadbeigi,%20Amir%20Parviz&rft.date=2023-07-10&rft.volume=33&rft.issue=10&rft.spage=5604&rft.epage=5623&rft.pages=5604-5623&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6662&rft_dat=%3Cproquest_cross%3E2821538929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821538929&rft_id=info:pmid/&rfr_iscdi=true