Robust H∞ tracking of linear discrete‐time systems using Q‐learning
This paper deals with a robust H∞$$ {H}_{\infty } $$ tracking problem with a discounted factor. A new auxiliary system is established in terms of norm‐bounded time‐varying uncertainties. It is shown that the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system solves the...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2023-07, Vol.33 (10), p.5604-5623 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5623 |
---|---|
container_issue | 10 |
container_start_page | 5604 |
container_title | International journal of robust and nonlinear control |
container_volume | 33 |
creator | Valadbeigi, Amir Parviz Shu, Zhan Khaki Sedigh, Ali |
description | This paper deals with a robust H∞$$ {H}_{\infty } $$ tracking problem with a discounted factor. A new auxiliary system is established in terms of norm‐bounded time‐varying uncertainties. It is shown that the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system solves the original problem. Then, the new robust discounted H∞$$ {H}_{\infty } $$ tracking problem is represented as a well‐known zero‐sum game problem. Moreover, the robust tracking Bellman equation and the robust tracking Algebraic Riccati equation (RTARE) are inferred. A lower bound of a discounted factor for stability is obtained to assure the stability of the closed‐loop system. Based on the auxiliary system, the system is reshaped in a new structure that is applicable to Reinforcement Learning methods. Finally, an online Q‐learning algorithm without the knowledge of system matrices is proposed to solve the algebraic Riccati equation associated with the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system. Simulation results are given to verify the effectiveness and merits of the proposed method. |
doi_str_mv | 10.1002/rnc.6662 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821538929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821538929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2082-591e4cd1b73ed80cfd9cf175ab6e07f2befe36ce9c9b82840cfcdc5f778620b83</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmqRfyVGKuguL4qLn0KYTydqPNWmR3jx69Al8uH0SU-vVUybJjxnmj9A5JQtKCLuyjVokScIO0IwSIQLKQnE41pEIuGDhMTpxbkuI_2PRDK02bdG7Di_3n9-4s7l6Nc0LbjWuTAO5xaVxykIH-4-vztSA3eA6qB3u3ege_XPlWeMvp-hI55WDs79zjp5vb56yZbB-uFtl1-tAMcJZEAsKkSppkYZQcqJ0KZSmaZwXCZBUswI0hIkCoUTBGY-8UKWKdZryhJGCh3N0MfXd2fatB9fJbdvbxo-UjDMah35L4dXlpJRtnbOg5c6aOreDpESOQUkflByD8jSY6LupYPjXyc199ut_ABDzbRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821538929</pqid></control><display><type>article</type><title>Robust H∞ tracking of linear discrete‐time systems using Q‐learning</title><source>Access via Wiley Online Library</source><creator>Valadbeigi, Amir Parviz ; Shu, Zhan ; Khaki Sedigh, Ali</creator><creatorcontrib>Valadbeigi, Amir Parviz ; Shu, Zhan ; Khaki Sedigh, Ali</creatorcontrib><description>This paper deals with a robust H∞$$ {H}_{\infty } $$ tracking problem with a discounted factor. A new auxiliary system is established in terms of norm‐bounded time‐varying uncertainties. It is shown that the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system solves the original problem. Then, the new robust discounted H∞$$ {H}_{\infty } $$ tracking problem is represented as a well‐known zero‐sum game problem. Moreover, the robust tracking Bellman equation and the robust tracking Algebraic Riccati equation (RTARE) are inferred. A lower bound of a discounted factor for stability is obtained to assure the stability of the closed‐loop system. Based on the auxiliary system, the system is reshaped in a new structure that is applicable to Reinforcement Learning methods. Finally, an online Q‐learning algorithm without the knowledge of system matrices is proposed to solve the algebraic Riccati equation associated with the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system. Simulation results are given to verify the effectiveness and merits of the proposed method.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6662</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algebra ; Algorithms ; auxiliary system ; discounted factor ; Discrete time systems ; H infinity ; Lower bounds ; Machine learning ; Q‐learning ; Riccati equation ; robust H∞$$ {H}_{\infty } $$ tracking ; Robustness ; Stability ; Tracking problem</subject><ispartof>International journal of robust and nonlinear control, 2023-07, Vol.33 (10), p.5604-5623</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2082-591e4cd1b73ed80cfd9cf175ab6e07f2befe36ce9c9b82840cfcdc5f778620b83</citedby><cites>FETCH-LOGICAL-c2082-591e4cd1b73ed80cfd9cf175ab6e07f2befe36ce9c9b82840cfcdc5f778620b83</cites><orcidid>0000-0002-3508-1598 ; 0000-0001-6702-0063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6662$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6662$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Valadbeigi, Amir Parviz</creatorcontrib><creatorcontrib>Shu, Zhan</creatorcontrib><creatorcontrib>Khaki Sedigh, Ali</creatorcontrib><title>Robust H∞ tracking of linear discrete‐time systems using Q‐learning</title><title>International journal of robust and nonlinear control</title><description>This paper deals with a robust H∞$$ {H}_{\infty } $$ tracking problem with a discounted factor. A new auxiliary system is established in terms of norm‐bounded time‐varying uncertainties. It is shown that the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system solves the original problem. Then, the new robust discounted H∞$$ {H}_{\infty } $$ tracking problem is represented as a well‐known zero‐sum game problem. Moreover, the robust tracking Bellman equation and the robust tracking Algebraic Riccati equation (RTARE) are inferred. A lower bound of a discounted factor for stability is obtained to assure the stability of the closed‐loop system. Based on the auxiliary system, the system is reshaped in a new structure that is applicable to Reinforcement Learning methods. Finally, an online Q‐learning algorithm without the knowledge of system matrices is proposed to solve the algebraic Riccati equation associated with the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system. Simulation results are given to verify the effectiveness and merits of the proposed method.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>auxiliary system</subject><subject>discounted factor</subject><subject>Discrete time systems</subject><subject>H infinity</subject><subject>Lower bounds</subject><subject>Machine learning</subject><subject>Q‐learning</subject><subject>Riccati equation</subject><subject>robust H∞$$ {H}_{\infty } $$ tracking</subject><subject>Robustness</subject><subject>Stability</subject><subject>Tracking problem</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmqRfyVGKuguL4qLn0KYTydqPNWmR3jx69Al8uH0SU-vVUybJjxnmj9A5JQtKCLuyjVokScIO0IwSIQLKQnE41pEIuGDhMTpxbkuI_2PRDK02bdG7Di_3n9-4s7l6Nc0LbjWuTAO5xaVxykIH-4-vztSA3eA6qB3u3ege_XPlWeMvp-hI55WDs79zjp5vb56yZbB-uFtl1-tAMcJZEAsKkSppkYZQcqJ0KZSmaZwXCZBUswI0hIkCoUTBGY-8UKWKdZryhJGCh3N0MfXd2fatB9fJbdvbxo-UjDMah35L4dXlpJRtnbOg5c6aOreDpESOQUkflByD8jSY6LupYPjXyc199ut_ABDzbRc</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Valadbeigi, Amir Parviz</creator><creator>Shu, Zhan</creator><creator>Khaki Sedigh, Ali</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3508-1598</orcidid><orcidid>https://orcid.org/0000-0001-6702-0063</orcidid></search><sort><creationdate>20230710</creationdate><title>Robust H∞ tracking of linear discrete‐time systems using Q‐learning</title><author>Valadbeigi, Amir Parviz ; Shu, Zhan ; Khaki Sedigh, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2082-591e4cd1b73ed80cfd9cf175ab6e07f2befe36ce9c9b82840cfcdc5f778620b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>auxiliary system</topic><topic>discounted factor</topic><topic>Discrete time systems</topic><topic>H infinity</topic><topic>Lower bounds</topic><topic>Machine learning</topic><topic>Q‐learning</topic><topic>Riccati equation</topic><topic>robust H∞$$ {H}_{\infty } $$ tracking</topic><topic>Robustness</topic><topic>Stability</topic><topic>Tracking problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valadbeigi, Amir Parviz</creatorcontrib><creatorcontrib>Shu, Zhan</creatorcontrib><creatorcontrib>Khaki Sedigh, Ali</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valadbeigi, Amir Parviz</au><au>Shu, Zhan</au><au>Khaki Sedigh, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust H∞ tracking of linear discrete‐time systems using Q‐learning</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2023-07-10</date><risdate>2023</risdate><volume>33</volume><issue>10</issue><spage>5604</spage><epage>5623</epage><pages>5604-5623</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This paper deals with a robust H∞$$ {H}_{\infty } $$ tracking problem with a discounted factor. A new auxiliary system is established in terms of norm‐bounded time‐varying uncertainties. It is shown that the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system solves the original problem. Then, the new robust discounted H∞$$ {H}_{\infty } $$ tracking problem is represented as a well‐known zero‐sum game problem. Moreover, the robust tracking Bellman equation and the robust tracking Algebraic Riccati equation (RTARE) are inferred. A lower bound of a discounted factor for stability is obtained to assure the stability of the closed‐loop system. Based on the auxiliary system, the system is reshaped in a new structure that is applicable to Reinforcement Learning methods. Finally, an online Q‐learning algorithm without the knowledge of system matrices is proposed to solve the algebraic Riccati equation associated with the robust discounted H∞$$ {H}_{\infty } $$ tracking problem for the auxiliary system. Simulation results are given to verify the effectiveness and merits of the proposed method.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/rnc.6662</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3508-1598</orcidid><orcidid>https://orcid.org/0000-0001-6702-0063</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2023-07, Vol.33 (10), p.5604-5623 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2821538929 |
source | Access via Wiley Online Library |
subjects | Algebra Algorithms auxiliary system discounted factor Discrete time systems H infinity Lower bounds Machine learning Q‐learning Riccati equation robust H∞$$ {H}_{\infty } $$ tracking Robustness Stability Tracking problem |
title | Robust H∞ tracking of linear discrete‐time systems using Q‐learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20H%E2%88%9E%20tracking%20of%20linear%20discrete%E2%80%90time%20systems%20using%20Q%E2%80%90learning&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Valadbeigi,%20Amir%20Parviz&rft.date=2023-07-10&rft.volume=33&rft.issue=10&rft.spage=5604&rft.epage=5623&rft.pages=5604-5623&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6662&rft_dat=%3Cproquest_cross%3E2821538929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821538929&rft_id=info:pmid/&rfr_iscdi=true |