Large Magnetocaloric Effect of Sm3+-Doped La0.7Sr0.3–xSmxMn0.95Ni0.05O3(x = 0, 0.05, 0.10, 0.15) Manganites Near Room Temperature

A La 0.7 Sr 0.3− x Sm x Mn 0.95 Ni 0.05 O 3 ( x  = 0, 0.05, 0.10, 0.15) series of manganites were synthesized by the Pechini sol–gel method. The changes in structure and magnetic properties caused by the substitution of Sr 2+ by Sm 3+ were systematically investigated. The results of Rietveld refinem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2023-07, Vol.52 (7), p.4587-4602
Hauptverfasser: Jiang, Xinyu, Zou, Zhengguang, He, Bangrong, Zhang, Weijian, Mao, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4602
container_issue 7
container_start_page 4587
container_title Journal of electronic materials
container_volume 52
creator Jiang, Xinyu
Zou, Zhengguang
He, Bangrong
Zhang, Weijian
Mao, Zheng
description A La 0.7 Sr 0.3− x Sm x Mn 0.95 Ni 0.05 O 3 ( x  = 0, 0.05, 0.10, 0.15) series of manganites were synthesized by the Pechini sol–gel method. The changes in structure and magnetic properties caused by the substitution of Sr 2+ by Sm 3+ were systematically investigated. The results of Rietveld refinement using GSAS (General Structure Analysis System) software showed that the samples had a rhombohedral structure before and after the substitution, but the cell volume increased. In addition, the Curie temperature ( T C ) of the samples gradually decreased with increased doping, and the magnetic entropy change ( Δ S M ) showed the same trend. This can be attributed to the weakening of the ferromagnetic coupling between Mn 4+ and Mn 3+ . For the doped sample with x  = 0.05, the T C was 300 K, and the maximum magnetic entropy change ( - Δ S M max ) reached 4.59 J kg −1  K −1 at an applied magnetic field of 5 T. The relative cooling power (RCP) also reached 297.39 J kg −1 , which is certainly promising for meeting the need for room-temperature magnetic refrigeration. Graphical Abstract
doi_str_mv 10.1007/s11664-023-10395-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821500587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821500587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-c0901b4c8d0367ad14b6195bdd74febff9df7ba4ea03d9dcd39fe49065e898d3</originalsourceid><addsrcrecordid>eNp9UE1P3DAQtVArsaX8gZ4scaFqE2biOIkPPVSU0koLSOweerOceLxaROKtnRXbG7eqZ_4hvwQvi9Qbh_nUe280j7EPCDkC1CcRsarKDAqRIQgls7s9NkFZprGpfr1hExAVZrIQcp-9i_EGACU2OGF_pyYsiF-YxUCj78ytD8uOnzlH3ci947NefMq--RVZPjWQ17MAuXi8f9jM-s3FALmSl0vIQV6J483j_b8vKeAz3262GZ97lB_TgWFhhuVIkV-SCfza-57PqV9RMOM60Hv21pnbSIcv9YDNv5_NT39k06vzn6dfp1lXlGrMOlCAbdk1Nj1UG4tlW6GSrbV16ah1TllXt6YkA8Iq21mhHJUKKkmNaqw4YEc72VXwv9cUR33j12FIF3XRFCgBZFMnVLFDdcHHGMjpVVj2JvzRCHrrt975rZPf-tlvfZdIYkeKCTwsKPyXfoX1BIHngZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821500587</pqid></control><display><type>article</type><title>Large Magnetocaloric Effect of Sm3+-Doped La0.7Sr0.3–xSmxMn0.95Ni0.05O3(x = 0, 0.05, 0.10, 0.15) Manganites Near Room Temperature</title><source>Springer Nature - Complete Springer Journals</source><creator>Jiang, Xinyu ; Zou, Zhengguang ; He, Bangrong ; Zhang, Weijian ; Mao, Zheng</creator><creatorcontrib>Jiang, Xinyu ; Zou, Zhengguang ; He, Bangrong ; Zhang, Weijian ; Mao, Zheng</creatorcontrib><description>A La 0.7 Sr 0.3− x Sm x Mn 0.95 Ni 0.05 O 3 ( x  = 0, 0.05, 0.10, 0.15) series of manganites were synthesized by the Pechini sol–gel method. The changes in structure and magnetic properties caused by the substitution of Sr 2+ by Sm 3+ were systematically investigated. The results of Rietveld refinement using GSAS (General Structure Analysis System) software showed that the samples had a rhombohedral structure before and after the substitution, but the cell volume increased. In addition, the Curie temperature ( T C ) of the samples gradually decreased with increased doping, and the magnetic entropy change ( Δ S M ) showed the same trend. This can be attributed to the weakening of the ferromagnetic coupling between Mn 4+ and Mn 3+ . For the doped sample with x  = 0.05, the T C was 300 K, and the maximum magnetic entropy change ( - Δ S M max ) reached 4.59 J kg −1  K −1 at an applied magnetic field of 5 T. The relative cooling power (RCP) also reached 297.39 J kg −1 , which is certainly promising for meeting the need for room-temperature magnetic refrigeration. Graphical Abstract</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10395-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Curie temperature ; Electronics and Microelectronics ; Energy consumption ; Entropy ; Ferromagnetism ; Instrumentation ; Magnetic fields ; Magnetic properties ; Manganites ; Materials Science ; Optical and Electronic Materials ; Original Research Article ; Raw materials ; Room temperature ; Software ; Sol-gel processes ; Solid State Physics ; Structural analysis ; Substitutes</subject><ispartof>Journal of electronic materials, 2023-07, Vol.52 (7), p.4587-4602</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-c0901b4c8d0367ad14b6195bdd74febff9df7ba4ea03d9dcd39fe49065e898d3</citedby><cites>FETCH-LOGICAL-c249t-c0901b4c8d0367ad14b6195bdd74febff9df7ba4ea03d9dcd39fe49065e898d3</cites><orcidid>0000-0003-4277-9799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-023-10395-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-023-10395-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Jiang, Xinyu</creatorcontrib><creatorcontrib>Zou, Zhengguang</creatorcontrib><creatorcontrib>He, Bangrong</creatorcontrib><creatorcontrib>Zhang, Weijian</creatorcontrib><creatorcontrib>Mao, Zheng</creatorcontrib><title>Large Magnetocaloric Effect of Sm3+-Doped La0.7Sr0.3–xSmxMn0.95Ni0.05O3(x = 0, 0.05, 0.10, 0.15) Manganites Near Room Temperature</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>A La 0.7 Sr 0.3− x Sm x Mn 0.95 Ni 0.05 O 3 ( x  = 0, 0.05, 0.10, 0.15) series of manganites were synthesized by the Pechini sol–gel method. The changes in structure and magnetic properties caused by the substitution of Sr 2+ by Sm 3+ were systematically investigated. The results of Rietveld refinement using GSAS (General Structure Analysis System) software showed that the samples had a rhombohedral structure before and after the substitution, but the cell volume increased. In addition, the Curie temperature ( T C ) of the samples gradually decreased with increased doping, and the magnetic entropy change ( Δ S M ) showed the same trend. This can be attributed to the weakening of the ferromagnetic coupling between Mn 4+ and Mn 3+ . For the doped sample with x  = 0.05, the T C was 300 K, and the maximum magnetic entropy change ( - Δ S M max ) reached 4.59 J kg −1  K −1 at an applied magnetic field of 5 T. The relative cooling power (RCP) also reached 297.39 J kg −1 , which is certainly promising for meeting the need for room-temperature magnetic refrigeration. Graphical Abstract</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Curie temperature</subject><subject>Electronics and Microelectronics</subject><subject>Energy consumption</subject><subject>Entropy</subject><subject>Ferromagnetism</subject><subject>Instrumentation</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Manganites</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Raw materials</subject><subject>Room temperature</subject><subject>Software</subject><subject>Sol-gel processes</subject><subject>Solid State Physics</subject><subject>Structural analysis</subject><subject>Substitutes</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1P3DAQtVArsaX8gZ4scaFqE2biOIkPPVSU0koLSOweerOceLxaROKtnRXbG7eqZ_4hvwQvi9Qbh_nUe280j7EPCDkC1CcRsarKDAqRIQgls7s9NkFZprGpfr1hExAVZrIQcp-9i_EGACU2OGF_pyYsiF-YxUCj78ytD8uOnzlH3ci947NefMq--RVZPjWQ17MAuXi8f9jM-s3FALmSl0vIQV6J483j_b8vKeAz3262GZ97lB_TgWFhhuVIkV-SCfza-57PqV9RMOM60Hv21pnbSIcv9YDNv5_NT39k06vzn6dfp1lXlGrMOlCAbdk1Nj1UG4tlW6GSrbV16ah1TllXt6YkA8Iq21mhHJUKKkmNaqw4YEc72VXwv9cUR33j12FIF3XRFCgBZFMnVLFDdcHHGMjpVVj2JvzRCHrrt975rZPf-tlvfZdIYkeKCTwsKPyXfoX1BIHngZA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Jiang, Xinyu</creator><creator>Zou, Zhengguang</creator><creator>He, Bangrong</creator><creator>Zhang, Weijian</creator><creator>Mao, Zheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-4277-9799</orcidid></search><sort><creationdate>20230701</creationdate><title>Large Magnetocaloric Effect of Sm3+-Doped La0.7Sr0.3–xSmxMn0.95Ni0.05O3(x = 0, 0.05, 0.10, 0.15) Manganites Near Room Temperature</title><author>Jiang, Xinyu ; Zou, Zhengguang ; He, Bangrong ; Zhang, Weijian ; Mao, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-c0901b4c8d0367ad14b6195bdd74febff9df7ba4ea03d9dcd39fe49065e898d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Curie temperature</topic><topic>Electronics and Microelectronics</topic><topic>Energy consumption</topic><topic>Entropy</topic><topic>Ferromagnetism</topic><topic>Instrumentation</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Manganites</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Raw materials</topic><topic>Room temperature</topic><topic>Software</topic><topic>Sol-gel processes</topic><topic>Solid State Physics</topic><topic>Structural analysis</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xinyu</creatorcontrib><creatorcontrib>Zou, Zhengguang</creatorcontrib><creatorcontrib>He, Bangrong</creatorcontrib><creatorcontrib>Zhang, Weijian</creatorcontrib><creatorcontrib>Mao, Zheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xinyu</au><au>Zou, Zhengguang</au><au>He, Bangrong</au><au>Zhang, Weijian</au><au>Mao, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Magnetocaloric Effect of Sm3+-Doped La0.7Sr0.3–xSmxMn0.95Ni0.05O3(x = 0, 0.05, 0.10, 0.15) Manganites Near Room Temperature</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>52</volume><issue>7</issue><spage>4587</spage><epage>4602</epage><pages>4587-4602</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>A La 0.7 Sr 0.3− x Sm x Mn 0.95 Ni 0.05 O 3 ( x  = 0, 0.05, 0.10, 0.15) series of manganites were synthesized by the Pechini sol–gel method. The changes in structure and magnetic properties caused by the substitution of Sr 2+ by Sm 3+ were systematically investigated. The results of Rietveld refinement using GSAS (General Structure Analysis System) software showed that the samples had a rhombohedral structure before and after the substitution, but the cell volume increased. In addition, the Curie temperature ( T C ) of the samples gradually decreased with increased doping, and the magnetic entropy change ( Δ S M ) showed the same trend. This can be attributed to the weakening of the ferromagnetic coupling between Mn 4+ and Mn 3+ . For the doped sample with x  = 0.05, the T C was 300 K, and the maximum magnetic entropy change ( - Δ S M max ) reached 4.59 J kg −1  K −1 at an applied magnetic field of 5 T. The relative cooling power (RCP) also reached 297.39 J kg −1 , which is certainly promising for meeting the need for room-temperature magnetic refrigeration. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10395-w</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4277-9799</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2023-07, Vol.52 (7), p.4587-4602
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2821500587
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Curie temperature
Electronics and Microelectronics
Energy consumption
Entropy
Ferromagnetism
Instrumentation
Magnetic fields
Magnetic properties
Manganites
Materials Science
Optical and Electronic Materials
Original Research Article
Raw materials
Room temperature
Software
Sol-gel processes
Solid State Physics
Structural analysis
Substitutes
title Large Magnetocaloric Effect of Sm3+-Doped La0.7Sr0.3–xSmxMn0.95Ni0.05O3(x = 0, 0.05, 0.10, 0.15) Manganites Near Room Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Magnetocaloric%20Effect%20of%20Sm3+-Doped%20La0.7Sr0.3%E2%80%93xSmxMn0.95Ni0.05O3(x%E2%80%89=%E2%80%890,%200.05,%200.10,%200.15)%20Manganites%20Near%20Room%20Temperature&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Jiang,%20Xinyu&rft.date=2023-07-01&rft.volume=52&rft.issue=7&rft.spage=4587&rft.epage=4602&rft.pages=4587-4602&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10395-w&rft_dat=%3Cproquest_cross%3E2821500587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821500587&rft_id=info:pmid/&rfr_iscdi=true