Adaptive Sliding‐Mode Control for Permanent Magnet Spherical Actuator Based on Trajectory Re‐Planning
This study proposes an adaptive sliding‐mode control strategy based on trajectory re‐planning for a permanent magnet spherical actuator (PMSA) to address the large overshoot caused by substantial initial error while maintaining tracking precision. The proposed re‐planning technique reconstructs a lo...
Gespeichert in:
Veröffentlicht in: | IEEJ transactions on electrical and electronic engineering 2023-07, Vol.18 (7), p.1176-1185 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1185 |
---|---|
container_issue | 7 |
container_start_page | 1176 |
container_title | IEEJ transactions on electrical and electronic engineering |
container_volume | 18 |
creator | Guo, Xiwen Liu, Ronghao Wang, Qunjing Pan, Kaida |
description | This study proposes an adaptive sliding‐mode control strategy based on trajectory re‐planning for a permanent magnet spherical actuator (PMSA) to address the large overshoot caused by substantial initial error while maintaining tracking precision. The proposed re‐planning technique reconstructs a local trajectory without the preceding knowledge of the desired position in the future, which makes this technique more suitable for reconstructing trajectory given online. First, a re‐planning cool‐down term is added to maximize the capability of controller to improve the precision and speed of tracking. Moreover, a smooth switching technique is also applied to further improve the precision of trajectory tracking and stop redundant re‐planning when the system enters satisfactory state. Finally, the proposed trajectory re‐planning strategy is combined with a robust adaptive sliding‐mode controller (RASC), which effectively reduces friction, delay, and external uncertainty disturbances. The effectiveness of the proposed control design is verified by both simulation and experiment on PMSA, which can provide reference for the further engineering application of multi‐degree‐of‐freedom system. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC. |
doi_str_mv | 10.1002/tee.23829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821474127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821474127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2579-8bd75f1fe542526f2d7188f91a19f5f1c867be88f191b17d8e92d0281f8444213</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqWw4AaWWLFIm3Gc2l6WqvxIrahoWVtuMi6pghMcF9QdR-CMnARDEDtWM3rzzXvSi6JzSAaQJHToEQc0FVQeRD2QKcRMCjj823l6HJ207TZJ2CgVoheV40I3vnxFsqzKorSbz_ePeV0gmdTWu7oipnZkge5ZW7SezPXGoifL5gldmeuKjHO_0z4wV7rFgtSWrJzeYh6kPXnA4LaotLXB-DQ6Mrpq8ex39qPH6-lqchvP7m_uJuNZnNOMy1isC54ZMJgxmtGRoQUHIYwEDdKEQy5GfI1BAQlr4IVASYuECjCCMUYh7UcXnW_j6pcdtl5t652zIVJRQYFxBpQH6rKjcle3rUOjGlc-a7dXkKjvJlVoUv00Gdhhx76VFe7_B9VqOu0-vgCue3aR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821474127</pqid></control><display><type>article</type><title>Adaptive Sliding‐Mode Control for Permanent Magnet Spherical Actuator Based on Trajectory Re‐Planning</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Xiwen ; Liu, Ronghao ; Wang, Qunjing ; Pan, Kaida</creator><creatorcontrib>Guo, Xiwen ; Liu, Ronghao ; Wang, Qunjing ; Pan, Kaida</creatorcontrib><description>This study proposes an adaptive sliding‐mode control strategy based on trajectory re‐planning for a permanent magnet spherical actuator (PMSA) to address the large overshoot caused by substantial initial error while maintaining tracking precision. The proposed re‐planning technique reconstructs a local trajectory without the preceding knowledge of the desired position in the future, which makes this technique more suitable for reconstructing trajectory given online. First, a re‐planning cool‐down term is added to maximize the capability of controller to improve the precision and speed of tracking. Moreover, a smooth switching technique is also applied to further improve the precision of trajectory tracking and stop redundant re‐planning when the system enters satisfactory state. Finally, the proposed trajectory re‐planning strategy is combined with a robust adaptive sliding‐mode controller (RASC), which effectively reduces friction, delay, and external uncertainty disturbances. The effectiveness of the proposed control design is verified by both simulation and experiment on PMSA, which can provide reference for the further engineering application of multi‐degree‐of‐freedom system. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.23829</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Actuators ; Adaptive control ; adaptive sliding‐mode control ; Controllers ; Friction reduction ; permanent magnet spherical actuator ; Permanent magnets ; Robust control ; Sliding mode control ; Strategy ; Tracking ; Trajectory control ; Trajectory planning ; trajectory re‐planning ; trajectory tracking</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2023-07, Vol.18 (7), p.1176-1185</ispartof><rights>2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</rights><rights>2023 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2579-8bd75f1fe542526f2d7188f91a19f5f1c867be88f191b17d8e92d0281f8444213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftee.23829$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftee.23829$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Guo, Xiwen</creatorcontrib><creatorcontrib>Liu, Ronghao</creatorcontrib><creatorcontrib>Wang, Qunjing</creatorcontrib><creatorcontrib>Pan, Kaida</creatorcontrib><title>Adaptive Sliding‐Mode Control for Permanent Magnet Spherical Actuator Based on Trajectory Re‐Planning</title><title>IEEJ transactions on electrical and electronic engineering</title><description>This study proposes an adaptive sliding‐mode control strategy based on trajectory re‐planning for a permanent magnet spherical actuator (PMSA) to address the large overshoot caused by substantial initial error while maintaining tracking precision. The proposed re‐planning technique reconstructs a local trajectory without the preceding knowledge of the desired position in the future, which makes this technique more suitable for reconstructing trajectory given online. First, a re‐planning cool‐down term is added to maximize the capability of controller to improve the precision and speed of tracking. Moreover, a smooth switching technique is also applied to further improve the precision of trajectory tracking and stop redundant re‐planning when the system enters satisfactory state. Finally, the proposed trajectory re‐planning strategy is combined with a robust adaptive sliding‐mode controller (RASC), which effectively reduces friction, delay, and external uncertainty disturbances. The effectiveness of the proposed control design is verified by both simulation and experiment on PMSA, which can provide reference for the further engineering application of multi‐degree‐of‐freedom system. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>adaptive sliding‐mode control</subject><subject>Controllers</subject><subject>Friction reduction</subject><subject>permanent magnet spherical actuator</subject><subject>Permanent magnets</subject><subject>Robust control</subject><subject>Sliding mode control</subject><subject>Strategy</subject><subject>Tracking</subject><subject>Trajectory control</subject><subject>Trajectory planning</subject><subject>trajectory re‐planning</subject><subject>trajectory tracking</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhSMEEqWw4AaWWLFIm3Gc2l6WqvxIrahoWVtuMi6pghMcF9QdR-CMnARDEDtWM3rzzXvSi6JzSAaQJHToEQc0FVQeRD2QKcRMCjj823l6HJ207TZJ2CgVoheV40I3vnxFsqzKorSbz_ePeV0gmdTWu7oipnZkge5ZW7SezPXGoifL5gldmeuKjHO_0z4wV7rFgtSWrJzeYh6kPXnA4LaotLXB-DQ6Mrpq8ex39qPH6-lqchvP7m_uJuNZnNOMy1isC54ZMJgxmtGRoQUHIYwEDdKEQy5GfI1BAQlr4IVASYuECjCCMUYh7UcXnW_j6pcdtl5t652zIVJRQYFxBpQH6rKjcle3rUOjGlc-a7dXkKjvJlVoUv00Gdhhx76VFe7_B9VqOu0-vgCue3aR</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Guo, Xiwen</creator><creator>Liu, Ronghao</creator><creator>Wang, Qunjing</creator><creator>Pan, Kaida</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>202307</creationdate><title>Adaptive Sliding‐Mode Control for Permanent Magnet Spherical Actuator Based on Trajectory Re‐Planning</title><author>Guo, Xiwen ; Liu, Ronghao ; Wang, Qunjing ; Pan, Kaida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2579-8bd75f1fe542526f2d7188f91a19f5f1c867be88f191b17d8e92d0281f8444213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>adaptive sliding‐mode control</topic><topic>Controllers</topic><topic>Friction reduction</topic><topic>permanent magnet spherical actuator</topic><topic>Permanent magnets</topic><topic>Robust control</topic><topic>Sliding mode control</topic><topic>Strategy</topic><topic>Tracking</topic><topic>Trajectory control</topic><topic>Trajectory planning</topic><topic>trajectory re‐planning</topic><topic>trajectory tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiwen</creatorcontrib><creatorcontrib>Liu, Ronghao</creatorcontrib><creatorcontrib>Wang, Qunjing</creatorcontrib><creatorcontrib>Pan, Kaida</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiwen</au><au>Liu, Ronghao</au><au>Wang, Qunjing</au><au>Pan, Kaida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Sliding‐Mode Control for Permanent Magnet Spherical Actuator Based on Trajectory Re‐Planning</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><date>2023-07</date><risdate>2023</risdate><volume>18</volume><issue>7</issue><spage>1176</spage><epage>1185</epage><pages>1176-1185</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>This study proposes an adaptive sliding‐mode control strategy based on trajectory re‐planning for a permanent magnet spherical actuator (PMSA) to address the large overshoot caused by substantial initial error while maintaining tracking precision. The proposed re‐planning technique reconstructs a local trajectory without the preceding knowledge of the desired position in the future, which makes this technique more suitable for reconstructing trajectory given online. First, a re‐planning cool‐down term is added to maximize the capability of controller to improve the precision and speed of tracking. Moreover, a smooth switching technique is also applied to further improve the precision of trajectory tracking and stop redundant re‐planning when the system enters satisfactory state. Finally, the proposed trajectory re‐planning strategy is combined with a robust adaptive sliding‐mode controller (RASC), which effectively reduces friction, delay, and external uncertainty disturbances. The effectiveness of the proposed control design is verified by both simulation and experiment on PMSA, which can provide reference for the further engineering application of multi‐degree‐of‐freedom system. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/tee.23829</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-4973 |
ispartof | IEEJ transactions on electrical and electronic engineering, 2023-07, Vol.18 (7), p.1176-1185 |
issn | 1931-4973 1931-4981 |
language | eng |
recordid | cdi_proquest_journals_2821474127 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Actuators Adaptive control adaptive sliding‐mode control Controllers Friction reduction permanent magnet spherical actuator Permanent magnets Robust control Sliding mode control Strategy Tracking Trajectory control Trajectory planning trajectory re‐planning trajectory tracking |
title | Adaptive Sliding‐Mode Control for Permanent Magnet Spherical Actuator Based on Trajectory Re‐Planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Sliding%E2%80%90Mode%20Control%20for%20Permanent%20Magnet%20Spherical%20Actuator%20Based%20on%20Trajectory%20Re%E2%80%90Planning&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Guo,%20Xiwen&rft.date=2023-07&rft.volume=18&rft.issue=7&rft.spage=1176&rft.epage=1185&rft.pages=1176-1185&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.23829&rft_dat=%3Cproquest_cross%3E2821474127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821474127&rft_id=info:pmid/&rfr_iscdi=true |