Adaptive Sliding‐Mode Control for Permanent Magnet Spherical Actuator Based on Trajectory Re‐Planning

This study proposes an adaptive sliding‐mode control strategy based on trajectory re‐planning for a permanent magnet spherical actuator (PMSA) to address the large overshoot caused by substantial initial error while maintaining tracking precision. The proposed re‐planning technique reconstructs a lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEJ transactions on electrical and electronic engineering 2023-07, Vol.18 (7), p.1176-1185
Hauptverfasser: Guo, Xiwen, Liu, Ronghao, Wang, Qunjing, Pan, Kaida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1185
container_issue 7
container_start_page 1176
container_title IEEJ transactions on electrical and electronic engineering
container_volume 18
creator Guo, Xiwen
Liu, Ronghao
Wang, Qunjing
Pan, Kaida
description This study proposes an adaptive sliding‐mode control strategy based on trajectory re‐planning for a permanent magnet spherical actuator (PMSA) to address the large overshoot caused by substantial initial error while maintaining tracking precision. The proposed re‐planning technique reconstructs a local trajectory without the preceding knowledge of the desired position in the future, which makes this technique more suitable for reconstructing trajectory given online. First, a re‐planning cool‐down term is added to maximize the capability of controller to improve the precision and speed of tracking. Moreover, a smooth switching technique is also applied to further improve the precision of trajectory tracking and stop redundant re‐planning when the system enters satisfactory state. Finally, the proposed trajectory re‐planning strategy is combined with a robust adaptive sliding‐mode controller (RASC), which effectively reduces friction, delay, and external uncertainty disturbances. The effectiveness of the proposed control design is verified by both simulation and experiment on PMSA, which can provide reference for the further engineering application of multi‐degree‐of‐freedom system. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.
doi_str_mv 10.1002/tee.23829
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821474127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821474127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2579-8bd75f1fe542526f2d7188f91a19f5f1c867be88f191b17d8e92d0281f8444213</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqWw4AaWWLFIm3Gc2l6WqvxIrahoWVtuMi6pghMcF9QdR-CMnARDEDtWM3rzzXvSi6JzSAaQJHToEQc0FVQeRD2QKcRMCjj823l6HJ207TZJ2CgVoheV40I3vnxFsqzKorSbz_ePeV0gmdTWu7oipnZkge5ZW7SezPXGoifL5gldmeuKjHO_0z4wV7rFgtSWrJzeYh6kPXnA4LaotLXB-DQ6Mrpq8ex39qPH6-lqchvP7m_uJuNZnNOMy1isC54ZMJgxmtGRoQUHIYwEDdKEQy5GfI1BAQlr4IVASYuECjCCMUYh7UcXnW_j6pcdtl5t652zIVJRQYFxBpQH6rKjcle3rUOjGlc-a7dXkKjvJlVoUv00Gdhhx76VFe7_B9VqOu0-vgCue3aR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821474127</pqid></control><display><type>article</type><title>Adaptive Sliding‐Mode Control for Permanent Magnet Spherical Actuator Based on Trajectory Re‐Planning</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Xiwen ; Liu, Ronghao ; Wang, Qunjing ; Pan, Kaida</creator><creatorcontrib>Guo, Xiwen ; Liu, Ronghao ; Wang, Qunjing ; Pan, Kaida</creatorcontrib><description>This study proposes an adaptive sliding‐mode control strategy based on trajectory re‐planning for a permanent magnet spherical actuator (PMSA) to address the large overshoot caused by substantial initial error while maintaining tracking precision. The proposed re‐planning technique reconstructs a local trajectory without the preceding knowledge of the desired position in the future, which makes this technique more suitable for reconstructing trajectory given online. First, a re‐planning cool‐down term is added to maximize the capability of controller to improve the precision and speed of tracking. Moreover, a smooth switching technique is also applied to further improve the precision of trajectory tracking and stop redundant re‐planning when the system enters satisfactory state. Finally, the proposed trajectory re‐planning strategy is combined with a robust adaptive sliding‐mode controller (RASC), which effectively reduces friction, delay, and external uncertainty disturbances. The effectiveness of the proposed control design is verified by both simulation and experiment on PMSA, which can provide reference for the further engineering application of multi‐degree‐of‐freedom system. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.23829</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Actuators ; Adaptive control ; adaptive sliding‐mode control ; Controllers ; Friction reduction ; permanent magnet spherical actuator ; Permanent magnets ; Robust control ; Sliding mode control ; Strategy ; Tracking ; Trajectory control ; Trajectory planning ; trajectory re‐planning ; trajectory tracking</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2023-07, Vol.18 (7), p.1176-1185</ispartof><rights>2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</rights><rights>2023 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2579-8bd75f1fe542526f2d7188f91a19f5f1c867be88f191b17d8e92d0281f8444213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftee.23829$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftee.23829$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Guo, Xiwen</creatorcontrib><creatorcontrib>Liu, Ronghao</creatorcontrib><creatorcontrib>Wang, Qunjing</creatorcontrib><creatorcontrib>Pan, Kaida</creatorcontrib><title>Adaptive Sliding‐Mode Control for Permanent Magnet Spherical Actuator Based on Trajectory Re‐Planning</title><title>IEEJ transactions on electrical and electronic engineering</title><description>This study proposes an adaptive sliding‐mode control strategy based on trajectory re‐planning for a permanent magnet spherical actuator (PMSA) to address the large overshoot caused by substantial initial error while maintaining tracking precision. The proposed re‐planning technique reconstructs a local trajectory without the preceding knowledge of the desired position in the future, which makes this technique more suitable for reconstructing trajectory given online. First, a re‐planning cool‐down term is added to maximize the capability of controller to improve the precision and speed of tracking. Moreover, a smooth switching technique is also applied to further improve the precision of trajectory tracking and stop redundant re‐planning when the system enters satisfactory state. Finally, the proposed trajectory re‐planning strategy is combined with a robust adaptive sliding‐mode controller (RASC), which effectively reduces friction, delay, and external uncertainty disturbances. The effectiveness of the proposed control design is verified by both simulation and experiment on PMSA, which can provide reference for the further engineering application of multi‐degree‐of‐freedom system. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>adaptive sliding‐mode control</subject><subject>Controllers</subject><subject>Friction reduction</subject><subject>permanent magnet spherical actuator</subject><subject>Permanent magnets</subject><subject>Robust control</subject><subject>Sliding mode control</subject><subject>Strategy</subject><subject>Tracking</subject><subject>Trajectory control</subject><subject>Trajectory planning</subject><subject>trajectory re‐planning</subject><subject>trajectory tracking</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhSMEEqWw4AaWWLFIm3Gc2l6WqvxIrahoWVtuMi6pghMcF9QdR-CMnARDEDtWM3rzzXvSi6JzSAaQJHToEQc0FVQeRD2QKcRMCjj823l6HJ207TZJ2CgVoheV40I3vnxFsqzKorSbz_ePeV0gmdTWu7oipnZkge5ZW7SezPXGoifL5gldmeuKjHO_0z4wV7rFgtSWrJzeYh6kPXnA4LaotLXB-DQ6Mrpq8ex39qPH6-lqchvP7m_uJuNZnNOMy1isC54ZMJgxmtGRoQUHIYwEDdKEQy5GfI1BAQlr4IVASYuECjCCMUYh7UcXnW_j6pcdtl5t652zIVJRQYFxBpQH6rKjcle3rUOjGlc-a7dXkKjvJlVoUv00Gdhhx76VFe7_B9VqOu0-vgCue3aR</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Guo, Xiwen</creator><creator>Liu, Ronghao</creator><creator>Wang, Qunjing</creator><creator>Pan, Kaida</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>202307</creationdate><title>Adaptive Sliding‐Mode Control for Permanent Magnet Spherical Actuator Based on Trajectory Re‐Planning</title><author>Guo, Xiwen ; Liu, Ronghao ; Wang, Qunjing ; Pan, Kaida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2579-8bd75f1fe542526f2d7188f91a19f5f1c867be88f191b17d8e92d0281f8444213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>adaptive sliding‐mode control</topic><topic>Controllers</topic><topic>Friction reduction</topic><topic>permanent magnet spherical actuator</topic><topic>Permanent magnets</topic><topic>Robust control</topic><topic>Sliding mode control</topic><topic>Strategy</topic><topic>Tracking</topic><topic>Trajectory control</topic><topic>Trajectory planning</topic><topic>trajectory re‐planning</topic><topic>trajectory tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiwen</creatorcontrib><creatorcontrib>Liu, Ronghao</creatorcontrib><creatorcontrib>Wang, Qunjing</creatorcontrib><creatorcontrib>Pan, Kaida</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiwen</au><au>Liu, Ronghao</au><au>Wang, Qunjing</au><au>Pan, Kaida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Sliding‐Mode Control for Permanent Magnet Spherical Actuator Based on Trajectory Re‐Planning</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><date>2023-07</date><risdate>2023</risdate><volume>18</volume><issue>7</issue><spage>1176</spage><epage>1185</epage><pages>1176-1185</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>This study proposes an adaptive sliding‐mode control strategy based on trajectory re‐planning for a permanent magnet spherical actuator (PMSA) to address the large overshoot caused by substantial initial error while maintaining tracking precision. The proposed re‐planning technique reconstructs a local trajectory without the preceding knowledge of the desired position in the future, which makes this technique more suitable for reconstructing trajectory given online. First, a re‐planning cool‐down term is added to maximize the capability of controller to improve the precision and speed of tracking. Moreover, a smooth switching technique is also applied to further improve the precision of trajectory tracking and stop redundant re‐planning when the system enters satisfactory state. Finally, the proposed trajectory re‐planning strategy is combined with a robust adaptive sliding‐mode controller (RASC), which effectively reduces friction, delay, and external uncertainty disturbances. The effectiveness of the proposed control design is verified by both simulation and experiment on PMSA, which can provide reference for the further engineering application of multi‐degree‐of‐freedom system. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/tee.23829</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1931-4973
ispartof IEEJ transactions on electrical and electronic engineering, 2023-07, Vol.18 (7), p.1176-1185
issn 1931-4973
1931-4981
language eng
recordid cdi_proquest_journals_2821474127
source Wiley Online Library Journals Frontfile Complete
subjects Actuators
Adaptive control
adaptive sliding‐mode control
Controllers
Friction reduction
permanent magnet spherical actuator
Permanent magnets
Robust control
Sliding mode control
Strategy
Tracking
Trajectory control
Trajectory planning
trajectory re‐planning
trajectory tracking
title Adaptive Sliding‐Mode Control for Permanent Magnet Spherical Actuator Based on Trajectory Re‐Planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Sliding%E2%80%90Mode%20Control%20for%20Permanent%20Magnet%20Spherical%20Actuator%20Based%20on%20Trajectory%20Re%E2%80%90Planning&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Guo,%20Xiwen&rft.date=2023-07&rft.volume=18&rft.issue=7&rft.spage=1176&rft.epage=1185&rft.pages=1176-1185&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.23829&rft_dat=%3Cproquest_cross%3E2821474127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821474127&rft_id=info:pmid/&rfr_iscdi=true