A path integral approach to quantum fluid dynamics: application to double well potential
In this work we develop an alternative approach for solution of Quantum Trajectories using the Path Integral method. The state-of-the-art technique in the field is to solve a set of nonlinear, coupled partial differential equations simultaneously. We opt for a fundamentally different route. We first...
Gespeichert in:
Veröffentlicht in: | Theoretical chemistry accounts 2023-06, Vol.142 (6), Article 57 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Theoretical chemistry accounts |
container_volume | 142 |
creator | Ghosh, Sagnik Ghosh, Swapan K. |
description | In this work we develop an alternative approach for solution of Quantum Trajectories using the Path Integral method. The state-of-the-art technique in the field is to solve a set of nonlinear, coupled partial differential equations simultaneously. We opt for a fundamentally different route. We first derive a general closed form expression for the Path Integral propagator valid for any general potential as a functional of the corresponding classical path. The method is exact and is applicable in many dimensions as well as multi-particle cases. This, then, is used to compute the Quantum Potential, which, in turn, can generate the Quantum Trajectories. As a model application to illustrate the method, we solve for the double-well potential, both analytically (using a perturbative approach) and numerically (exact solution). Using this we delve into seeking insight into Quantum Tunnelling. The work formally bridges the Path Integral approach with Quantum Fluid Dynamics, an issue of fundamental importance. |
doi_str_mv | 10.1007/s00214-023-02995-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821374589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821374589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-83d815c43a339e5ed836ab2a30a7e4cbf72d8188d6a8e9968d6530515553c1553</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoWnaH-hK0LVbPaxY7i6EviDQTQvZiYksJwqK7UgyJn9fpQ5018XM3MW5M8NF6J6SR0pI8RQIYTTPCOOpylJkwwWa0JyzjDGeX561lHR1jW5C2JHEM1FM0GqOO4hbbJtoNh4chq7zLegtji0-9NDEfo9r19sKV8cG9laH5xPjrIZo2-aEVW2_dgYPxjnctdE00YK7RVc1uGDuznOKvl9fvhbv2fLz7WMxX2aaFSRmkleSCp1z4Lw0wlSSz2DNgBMoTK7XdcESIGU1A2nKcpaE4ERQIQTXqfMpehj3prcPvQlR7dreN-mkYpJRXuRCloliI6V9G4I3teq83YM_KkrUKUE1JqhSguo3QTUkEx9NIcHNxvi_1f-4fgCUAnQ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821374589</pqid></control><display><type>article</type><title>A path integral approach to quantum fluid dynamics: application to double well potential</title><source>SpringerLink Journals</source><creator>Ghosh, Sagnik ; Ghosh, Swapan K.</creator><creatorcontrib>Ghosh, Sagnik ; Ghosh, Swapan K.</creatorcontrib><description>In this work we develop an alternative approach for solution of Quantum Trajectories using the Path Integral method. The state-of-the-art technique in the field is to solve a set of nonlinear, coupled partial differential equations simultaneously. We opt for a fundamentally different route. We first derive a general closed form expression for the Path Integral propagator valid for any general potential as a functional of the corresponding classical path. The method is exact and is applicable in many dimensions as well as multi-particle cases. This, then, is used to compute the Quantum Potential, which, in turn, can generate the Quantum Trajectories. As a model application to illustrate the method, we solve for the double-well potential, both analytically (using a perturbative approach) and numerically (exact solution). Using this we delve into seeking insight into Quantum Tunnelling. The work formally bridges the Path Integral approach with Quantum Fluid Dynamics, an issue of fundamental importance.</description><identifier>ISSN: 1432-881X</identifier><identifier>EISSN: 1432-2234</identifier><identifier>DOI: 10.1007/s00214-023-02995-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic/Molecular Structure and Spectra ; Chemistry ; Chemistry and Materials Science ; Exact solutions ; Fluid dynamics ; Inorganic Chemistry ; Organic Chemistry ; Partial differential equations ; Physical Chemistry ; Quantum tunnelling ; Theoretical and Computational Chemistry</subject><ispartof>Theoretical chemistry accounts, 2023-06, Vol.142 (6), Article 57</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-83d815c43a339e5ed836ab2a30a7e4cbf72d8188d6a8e9968d6530515553c1553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00214-023-02995-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00214-023-02995-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ghosh, Sagnik</creatorcontrib><creatorcontrib>Ghosh, Swapan K.</creatorcontrib><title>A path integral approach to quantum fluid dynamics: application to double well potential</title><title>Theoretical chemistry accounts</title><addtitle>Theor Chem Acc</addtitle><description>In this work we develop an alternative approach for solution of Quantum Trajectories using the Path Integral method. The state-of-the-art technique in the field is to solve a set of nonlinear, coupled partial differential equations simultaneously. We opt for a fundamentally different route. We first derive a general closed form expression for the Path Integral propagator valid for any general potential as a functional of the corresponding classical path. The method is exact and is applicable in many dimensions as well as multi-particle cases. This, then, is used to compute the Quantum Potential, which, in turn, can generate the Quantum Trajectories. As a model application to illustrate the method, we solve for the double-well potential, both analytically (using a perturbative approach) and numerically (exact solution). Using this we delve into seeking insight into Quantum Tunnelling. The work formally bridges the Path Integral approach with Quantum Fluid Dynamics, an issue of fundamental importance.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Exact solutions</subject><subject>Fluid dynamics</subject><subject>Inorganic Chemistry</subject><subject>Organic Chemistry</subject><subject>Partial differential equations</subject><subject>Physical Chemistry</subject><subject>Quantum tunnelling</subject><subject>Theoretical and Computational Chemistry</subject><issn>1432-881X</issn><issn>1432-2234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoWnaH-hK0LVbPaxY7i6EviDQTQvZiYksJwqK7UgyJn9fpQ5018XM3MW5M8NF6J6SR0pI8RQIYTTPCOOpylJkwwWa0JyzjDGeX561lHR1jW5C2JHEM1FM0GqOO4hbbJtoNh4chq7zLegtji0-9NDEfo9r19sKV8cG9laH5xPjrIZo2-aEVW2_dgYPxjnctdE00YK7RVc1uGDuznOKvl9fvhbv2fLz7WMxX2aaFSRmkleSCp1z4Lw0wlSSz2DNgBMoTK7XdcESIGU1A2nKcpaE4ERQIQTXqfMpehj3prcPvQlR7dreN-mkYpJRXuRCloliI6V9G4I3teq83YM_KkrUKUE1JqhSguo3QTUkEx9NIcHNxvi_1f-4fgCUAnQ6</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Ghosh, Sagnik</creator><creator>Ghosh, Swapan K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>A path integral approach to quantum fluid dynamics: application to double well potential</title><author>Ghosh, Sagnik ; Ghosh, Swapan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-83d815c43a339e5ed836ab2a30a7e4cbf72d8188d6a8e9968d6530515553c1553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Exact solutions</topic><topic>Fluid dynamics</topic><topic>Inorganic Chemistry</topic><topic>Organic Chemistry</topic><topic>Partial differential equations</topic><topic>Physical Chemistry</topic><topic>Quantum tunnelling</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Sagnik</creatorcontrib><creatorcontrib>Ghosh, Swapan K.</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical chemistry accounts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Sagnik</au><au>Ghosh, Swapan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A path integral approach to quantum fluid dynamics: application to double well potential</atitle><jtitle>Theoretical chemistry accounts</jtitle><stitle>Theor Chem Acc</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>142</volume><issue>6</issue><artnum>57</artnum><issn>1432-881X</issn><eissn>1432-2234</eissn><abstract>In this work we develop an alternative approach for solution of Quantum Trajectories using the Path Integral method. The state-of-the-art technique in the field is to solve a set of nonlinear, coupled partial differential equations simultaneously. We opt for a fundamentally different route. We first derive a general closed form expression for the Path Integral propagator valid for any general potential as a functional of the corresponding classical path. The method is exact and is applicable in many dimensions as well as multi-particle cases. This, then, is used to compute the Quantum Potential, which, in turn, can generate the Quantum Trajectories. As a model application to illustrate the method, we solve for the double-well potential, both analytically (using a perturbative approach) and numerically (exact solution). Using this we delve into seeking insight into Quantum Tunnelling. The work formally bridges the Path Integral approach with Quantum Fluid Dynamics, an issue of fundamental importance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00214-023-02995-w</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-881X |
ispartof | Theoretical chemistry accounts, 2023-06, Vol.142 (6), Article 57 |
issn | 1432-881X 1432-2234 |
language | eng |
recordid | cdi_proquest_journals_2821374589 |
source | SpringerLink Journals |
subjects | Atomic/Molecular Structure and Spectra Chemistry Chemistry and Materials Science Exact solutions Fluid dynamics Inorganic Chemistry Organic Chemistry Partial differential equations Physical Chemistry Quantum tunnelling Theoretical and Computational Chemistry |
title | A path integral approach to quantum fluid dynamics: application to double well potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20path%20integral%20approach%20to%20quantum%20fluid%20dynamics:%20application%20to%20double%20well%20potential&rft.jtitle=Theoretical%20chemistry%20accounts&rft.au=Ghosh,%20Sagnik&rft.date=2023-06-01&rft.volume=142&rft.issue=6&rft.artnum=57&rft.issn=1432-881X&rft.eissn=1432-2234&rft_id=info:doi/10.1007/s00214-023-02995-w&rft_dat=%3Cproquest_cross%3E2821374589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821374589&rft_id=info:pmid/&rfr_iscdi=true |