Noise-Tolerant Superconducting Gates with High Fidelity

We design two-qubit quantum gates by coupling two Transmon qubits with a capacitor and study the time-dependent dynamics of the qubit–qubit interaction for different inter-qubit interaction strengths in the presence of quantum noise. Particularly, we focus on three famous quantum gates, iSWAP, bSWAP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Russian laser research 2023-03, Vol.44 (2), p.135-147
Hauptverfasser: Khan, Junaid, Akram, Javed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 2
container_start_page 135
container_title Journal of Russian laser research
container_volume 44
creator Khan, Junaid
Akram, Javed
description We design two-qubit quantum gates by coupling two Transmon qubits with a capacitor and study the time-dependent dynamics of the qubit–qubit interaction for different inter-qubit interaction strengths in the presence of quantum noise. Particularly, we focus on three famous quantum gates, iSWAP, bSWAP, and CNOT. In this study, we investigate different types of noises, such as emission, absorption, and dephasing. Two-qubit gates, iSWAP and bSWAP, are modeled by direct variable coupling between two Transmon qubits. In addition, we construct the CNOT gate, using three qubits, where the two qubits are used for inputs and outputs, and the middle qubit acts as a tunable coupler between the two qubits. The middle qubit is needed for energy conservation; we called it a garbage bit, since we do not use it in logical operations. For the two input/output coupled qubits, direct variable capacitor coupling is also used. In view of the coupled Lindblad master equations, we study the time-dependent dynamics of our proposed quantum models. A significant impact of emission/absorption quantum noise can be seen on iSWAP, bSWAP, and CNOT gates, as compared to dephasing noise. Additionally, we also discuss the generation of entanglement for different scenarios with and without noises.
doi_str_mv 10.1007/s10946-023-10116-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821374547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821374547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cfc1f09da5b07bc5575de2ae59a082800d10ecde214c9e5d799f2b3236d623af3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SSbDbJUYpthaIH6zmkSbZNqbs12UX27U1dwZunGYbv_wc-hG4J3BMA8ZAIqLLCQBkmQEiFhzM0IVwwLEUF53kHQTCVrLpEVyntAUBJqSZIvLQhebxuDz6apive-qOPtm1cb7vQbIuF6XwqvkK3K5ZhuyvmwflD6IZrdFGbQ_I3v3OK3udP69kSr14Xz7PHFbaMqA7b2pIalDN8A2JjORfceWo8VwYklQCOgLf5REqrPHdCqZpuGGWVqygzNZuiu7H3GNvP3qdO79s-NvmlppISJkpeikzRkbKxTSn6Wh9j-DBx0AT0SZAeBeksSP8I0kMOsTGUMtxsffyr_if1DSuxaOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821374547</pqid></control><display><type>article</type><title>Noise-Tolerant Superconducting Gates with High Fidelity</title><source>SpringerNature Journals</source><creator>Khan, Junaid ; Akram, Javed</creator><creatorcontrib>Khan, Junaid ; Akram, Javed</creatorcontrib><description>We design two-qubit quantum gates by coupling two Transmon qubits with a capacitor and study the time-dependent dynamics of the qubit–qubit interaction for different inter-qubit interaction strengths in the presence of quantum noise. Particularly, we focus on three famous quantum gates, iSWAP, bSWAP, and CNOT. In this study, we investigate different types of noises, such as emission, absorption, and dephasing. Two-qubit gates, iSWAP and bSWAP, are modeled by direct variable coupling between two Transmon qubits. In addition, we construct the CNOT gate, using three qubits, where the two qubits are used for inputs and outputs, and the middle qubit acts as a tunable coupler between the two qubits. The middle qubit is needed for energy conservation; we called it a garbage bit, since we do not use it in logical operations. For the two input/output coupled qubits, direct variable capacitor coupling is also used. In view of the coupled Lindblad master equations, we study the time-dependent dynamics of our proposed quantum models. A significant impact of emission/absorption quantum noise can be seen on iSWAP, bSWAP, and CNOT gates, as compared to dephasing noise. Additionally, we also discuss the generation of entanglement for different scenarios with and without noises.</description><identifier>ISSN: 1071-2836</identifier><identifier>EISSN: 1573-8760</identifier><identifier>DOI: 10.1007/s10946-023-10116-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Absorption ; Capacitors ; Coupling ; Emission analysis ; Garbage ; Gates ; Lasers ; Microwaves ; Noise ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Quantum entanglement ; Qubits (quantum computing) ; RF and Optical Engineering ; Time dependence</subject><ispartof>Journal of Russian laser research, 2023-03, Vol.44 (2), p.135-147</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cfc1f09da5b07bc5575de2ae59a082800d10ecde214c9e5d799f2b3236d623af3</citedby><cites>FETCH-LOGICAL-c319t-cfc1f09da5b07bc5575de2ae59a082800d10ecde214c9e5d799f2b3236d623af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10946-023-10116-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10946-023-10116-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khan, Junaid</creatorcontrib><creatorcontrib>Akram, Javed</creatorcontrib><title>Noise-Tolerant Superconducting Gates with High Fidelity</title><title>Journal of Russian laser research</title><addtitle>J Russ Laser Res</addtitle><description>We design two-qubit quantum gates by coupling two Transmon qubits with a capacitor and study the time-dependent dynamics of the qubit–qubit interaction for different inter-qubit interaction strengths in the presence of quantum noise. Particularly, we focus on three famous quantum gates, iSWAP, bSWAP, and CNOT. In this study, we investigate different types of noises, such as emission, absorption, and dephasing. Two-qubit gates, iSWAP and bSWAP, are modeled by direct variable coupling between two Transmon qubits. In addition, we construct the CNOT gate, using three qubits, where the two qubits are used for inputs and outputs, and the middle qubit acts as a tunable coupler between the two qubits. The middle qubit is needed for energy conservation; we called it a garbage bit, since we do not use it in logical operations. For the two input/output coupled qubits, direct variable capacitor coupling is also used. In view of the coupled Lindblad master equations, we study the time-dependent dynamics of our proposed quantum models. A significant impact of emission/absorption quantum noise can be seen on iSWAP, bSWAP, and CNOT gates, as compared to dephasing noise. Additionally, we also discuss the generation of entanglement for different scenarios with and without noises.</description><subject>Absorption</subject><subject>Capacitors</subject><subject>Coupling</subject><subject>Emission analysis</subject><subject>Garbage</subject><subject>Gates</subject><subject>Lasers</subject><subject>Microwaves</subject><subject>Noise</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum entanglement</subject><subject>Qubits (quantum computing)</subject><subject>RF and Optical Engineering</subject><subject>Time dependence</subject><issn>1071-2836</issn><issn>1573-8760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SSbDbJUYpthaIH6zmkSbZNqbs12UX27U1dwZunGYbv_wc-hG4J3BMA8ZAIqLLCQBkmQEiFhzM0IVwwLEUF53kHQTCVrLpEVyntAUBJqSZIvLQhebxuDz6apive-qOPtm1cb7vQbIuF6XwqvkK3K5ZhuyvmwflD6IZrdFGbQ_I3v3OK3udP69kSr14Xz7PHFbaMqA7b2pIalDN8A2JjORfceWo8VwYklQCOgLf5REqrPHdCqZpuGGWVqygzNZuiu7H3GNvP3qdO79s-NvmlppISJkpeikzRkbKxTSn6Wh9j-DBx0AT0SZAeBeksSP8I0kMOsTGUMtxsffyr_if1DSuxaOI</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Khan, Junaid</creator><creator>Akram, Javed</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Noise-Tolerant Superconducting Gates with High Fidelity</title><author>Khan, Junaid ; Akram, Javed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cfc1f09da5b07bc5575de2ae59a082800d10ecde214c9e5d799f2b3236d623af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Capacitors</topic><topic>Coupling</topic><topic>Emission analysis</topic><topic>Garbage</topic><topic>Gates</topic><topic>Lasers</topic><topic>Microwaves</topic><topic>Noise</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum entanglement</topic><topic>Qubits (quantum computing)</topic><topic>RF and Optical Engineering</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Junaid</creatorcontrib><creatorcontrib>Akram, Javed</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Russian laser research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Junaid</au><au>Akram, Javed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-Tolerant Superconducting Gates with High Fidelity</atitle><jtitle>Journal of Russian laser research</jtitle><stitle>J Russ Laser Res</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>44</volume><issue>2</issue><spage>135</spage><epage>147</epage><pages>135-147</pages><issn>1071-2836</issn><eissn>1573-8760</eissn><abstract>We design two-qubit quantum gates by coupling two Transmon qubits with a capacitor and study the time-dependent dynamics of the qubit–qubit interaction for different inter-qubit interaction strengths in the presence of quantum noise. Particularly, we focus on three famous quantum gates, iSWAP, bSWAP, and CNOT. In this study, we investigate different types of noises, such as emission, absorption, and dephasing. Two-qubit gates, iSWAP and bSWAP, are modeled by direct variable coupling between two Transmon qubits. In addition, we construct the CNOT gate, using three qubits, where the two qubits are used for inputs and outputs, and the middle qubit acts as a tunable coupler between the two qubits. The middle qubit is needed for energy conservation; we called it a garbage bit, since we do not use it in logical operations. For the two input/output coupled qubits, direct variable capacitor coupling is also used. In view of the coupled Lindblad master equations, we study the time-dependent dynamics of our proposed quantum models. A significant impact of emission/absorption quantum noise can be seen on iSWAP, bSWAP, and CNOT gates, as compared to dephasing noise. Additionally, we also discuss the generation of entanglement for different scenarios with and without noises.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10946-023-10116-y</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1071-2836
ispartof Journal of Russian laser research, 2023-03, Vol.44 (2), p.135-147
issn 1071-2836
1573-8760
language eng
recordid cdi_proquest_journals_2821374547
source SpringerNature Journals
subjects Absorption
Capacitors
Coupling
Emission analysis
Garbage
Gates
Lasers
Microwaves
Noise
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Quantum entanglement
Qubits (quantum computing)
RF and Optical Engineering
Time dependence
title Noise-Tolerant Superconducting Gates with High Fidelity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-Tolerant%20Superconducting%20Gates%20with%20High%20Fidelity&rft.jtitle=Journal%20of%20Russian%20laser%20research&rft.au=Khan,%20Junaid&rft.date=2023-03-01&rft.volume=44&rft.issue=2&rft.spage=135&rft.epage=147&rft.pages=135-147&rft.issn=1071-2836&rft.eissn=1573-8760&rft_id=info:doi/10.1007/s10946-023-10116-y&rft_dat=%3Cproquest_cross%3E2821374547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821374547&rft_id=info:pmid/&rfr_iscdi=true