Noise-Tolerant Superconducting Gates with High Fidelity
We design two-qubit quantum gates by coupling two Transmon qubits with a capacitor and study the time-dependent dynamics of the qubit–qubit interaction for different inter-qubit interaction strengths in the presence of quantum noise. Particularly, we focus on three famous quantum gates, iSWAP, bSWAP...
Gespeichert in:
Veröffentlicht in: | Journal of Russian laser research 2023-03, Vol.44 (2), p.135-147 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 2 |
container_start_page | 135 |
container_title | Journal of Russian laser research |
container_volume | 44 |
creator | Khan, Junaid Akram, Javed |
description | We design two-qubit quantum gates by coupling two Transmon qubits with a capacitor and study the time-dependent dynamics of the qubit–qubit interaction for different inter-qubit interaction strengths in the presence of quantum noise. Particularly, we focus on three famous quantum gates, iSWAP, bSWAP, and CNOT. In this study, we investigate different types of noises, such as emission, absorption, and dephasing. Two-qubit gates, iSWAP and bSWAP, are modeled by direct variable coupling between two Transmon qubits. In addition, we construct the CNOT gate, using three qubits, where the two qubits are used for inputs and outputs, and the middle qubit acts as a tunable coupler between the two qubits. The middle qubit is needed for energy conservation; we called it a garbage bit, since we do not use it in logical operations. For the two input/output coupled qubits, direct variable capacitor coupling is also used. In view of the coupled Lindblad master equations, we study the time-dependent dynamics of our proposed quantum models. A significant impact of emission/absorption quantum noise can be seen on iSWAP, bSWAP, and CNOT gates, as compared to dephasing noise. Additionally, we also discuss the generation of entanglement for different scenarios with and without noises. |
doi_str_mv | 10.1007/s10946-023-10116-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821374547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821374547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cfc1f09da5b07bc5575de2ae59a082800d10ecde214c9e5d799f2b3236d623af3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SSbDbJUYpthaIH6zmkSbZNqbs12UX27U1dwZunGYbv_wc-hG4J3BMA8ZAIqLLCQBkmQEiFhzM0IVwwLEUF53kHQTCVrLpEVyntAUBJqSZIvLQhebxuDz6apive-qOPtm1cb7vQbIuF6XwqvkK3K5ZhuyvmwflD6IZrdFGbQ_I3v3OK3udP69kSr14Xz7PHFbaMqA7b2pIalDN8A2JjORfceWo8VwYklQCOgLf5REqrPHdCqZpuGGWVqygzNZuiu7H3GNvP3qdO79s-NvmlppISJkpeikzRkbKxTSn6Wh9j-DBx0AT0SZAeBeksSP8I0kMOsTGUMtxsffyr_if1DSuxaOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821374547</pqid></control><display><type>article</type><title>Noise-Tolerant Superconducting Gates with High Fidelity</title><source>SpringerNature Journals</source><creator>Khan, Junaid ; Akram, Javed</creator><creatorcontrib>Khan, Junaid ; Akram, Javed</creatorcontrib><description>We design two-qubit quantum gates by coupling two Transmon qubits with a capacitor and study the time-dependent dynamics of the qubit–qubit interaction for different inter-qubit interaction strengths in the presence of quantum noise. Particularly, we focus on three famous quantum gates, iSWAP, bSWAP, and CNOT. In this study, we investigate different types of noises, such as emission, absorption, and dephasing. Two-qubit gates, iSWAP and bSWAP, are modeled by direct variable coupling between two Transmon qubits. In addition, we construct the CNOT gate, using three qubits, where the two qubits are used for inputs and outputs, and the middle qubit acts as a tunable coupler between the two qubits. The middle qubit is needed for energy conservation; we called it a garbage bit, since we do not use it in logical operations. For the two input/output coupled qubits, direct variable capacitor coupling is also used. In view of the coupled Lindblad master equations, we study the time-dependent dynamics of our proposed quantum models. A significant impact of emission/absorption quantum noise can be seen on iSWAP, bSWAP, and CNOT gates, as compared to dephasing noise. Additionally, we also discuss the generation of entanglement for different scenarios with and without noises.</description><identifier>ISSN: 1071-2836</identifier><identifier>EISSN: 1573-8760</identifier><identifier>DOI: 10.1007/s10946-023-10116-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Absorption ; Capacitors ; Coupling ; Emission analysis ; Garbage ; Gates ; Lasers ; Microwaves ; Noise ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Quantum entanglement ; Qubits (quantum computing) ; RF and Optical Engineering ; Time dependence</subject><ispartof>Journal of Russian laser research, 2023-03, Vol.44 (2), p.135-147</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cfc1f09da5b07bc5575de2ae59a082800d10ecde214c9e5d799f2b3236d623af3</citedby><cites>FETCH-LOGICAL-c319t-cfc1f09da5b07bc5575de2ae59a082800d10ecde214c9e5d799f2b3236d623af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10946-023-10116-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10946-023-10116-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khan, Junaid</creatorcontrib><creatorcontrib>Akram, Javed</creatorcontrib><title>Noise-Tolerant Superconducting Gates with High Fidelity</title><title>Journal of Russian laser research</title><addtitle>J Russ Laser Res</addtitle><description>We design two-qubit quantum gates by coupling two Transmon qubits with a capacitor and study the time-dependent dynamics of the qubit–qubit interaction for different inter-qubit interaction strengths in the presence of quantum noise. Particularly, we focus on three famous quantum gates, iSWAP, bSWAP, and CNOT. In this study, we investigate different types of noises, such as emission, absorption, and dephasing. Two-qubit gates, iSWAP and bSWAP, are modeled by direct variable coupling between two Transmon qubits. In addition, we construct the CNOT gate, using three qubits, where the two qubits are used for inputs and outputs, and the middle qubit acts as a tunable coupler between the two qubits. The middle qubit is needed for energy conservation; we called it a garbage bit, since we do not use it in logical operations. For the two input/output coupled qubits, direct variable capacitor coupling is also used. In view of the coupled Lindblad master equations, we study the time-dependent dynamics of our proposed quantum models. A significant impact of emission/absorption quantum noise can be seen on iSWAP, bSWAP, and CNOT gates, as compared to dephasing noise. Additionally, we also discuss the generation of entanglement for different scenarios with and without noises.</description><subject>Absorption</subject><subject>Capacitors</subject><subject>Coupling</subject><subject>Emission analysis</subject><subject>Garbage</subject><subject>Gates</subject><subject>Lasers</subject><subject>Microwaves</subject><subject>Noise</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum entanglement</subject><subject>Qubits (quantum computing)</subject><subject>RF and Optical Engineering</subject><subject>Time dependence</subject><issn>1071-2836</issn><issn>1573-8760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SSbDbJUYpthaIH6zmkSbZNqbs12UX27U1dwZunGYbv_wc-hG4J3BMA8ZAIqLLCQBkmQEiFhzM0IVwwLEUF53kHQTCVrLpEVyntAUBJqSZIvLQhebxuDz6apive-qOPtm1cb7vQbIuF6XwqvkK3K5ZhuyvmwflD6IZrdFGbQ_I3v3OK3udP69kSr14Xz7PHFbaMqA7b2pIalDN8A2JjORfceWo8VwYklQCOgLf5REqrPHdCqZpuGGWVqygzNZuiu7H3GNvP3qdO79s-NvmlppISJkpeikzRkbKxTSn6Wh9j-DBx0AT0SZAeBeksSP8I0kMOsTGUMtxsffyr_if1DSuxaOI</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Khan, Junaid</creator><creator>Akram, Javed</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Noise-Tolerant Superconducting Gates with High Fidelity</title><author>Khan, Junaid ; Akram, Javed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cfc1f09da5b07bc5575de2ae59a082800d10ecde214c9e5d799f2b3236d623af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Capacitors</topic><topic>Coupling</topic><topic>Emission analysis</topic><topic>Garbage</topic><topic>Gates</topic><topic>Lasers</topic><topic>Microwaves</topic><topic>Noise</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum entanglement</topic><topic>Qubits (quantum computing)</topic><topic>RF and Optical Engineering</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Junaid</creatorcontrib><creatorcontrib>Akram, Javed</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Russian laser research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Junaid</au><au>Akram, Javed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-Tolerant Superconducting Gates with High Fidelity</atitle><jtitle>Journal of Russian laser research</jtitle><stitle>J Russ Laser Res</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>44</volume><issue>2</issue><spage>135</spage><epage>147</epage><pages>135-147</pages><issn>1071-2836</issn><eissn>1573-8760</eissn><abstract>We design two-qubit quantum gates by coupling two Transmon qubits with a capacitor and study the time-dependent dynamics of the qubit–qubit interaction for different inter-qubit interaction strengths in the presence of quantum noise. Particularly, we focus on three famous quantum gates, iSWAP, bSWAP, and CNOT. In this study, we investigate different types of noises, such as emission, absorption, and dephasing. Two-qubit gates, iSWAP and bSWAP, are modeled by direct variable coupling between two Transmon qubits. In addition, we construct the CNOT gate, using three qubits, where the two qubits are used for inputs and outputs, and the middle qubit acts as a tunable coupler between the two qubits. The middle qubit is needed for energy conservation; we called it a garbage bit, since we do not use it in logical operations. For the two input/output coupled qubits, direct variable capacitor coupling is also used. In view of the coupled Lindblad master equations, we study the time-dependent dynamics of our proposed quantum models. A significant impact of emission/absorption quantum noise can be seen on iSWAP, bSWAP, and CNOT gates, as compared to dephasing noise. Additionally, we also discuss the generation of entanglement for different scenarios with and without noises.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10946-023-10116-y</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1071-2836 |
ispartof | Journal of Russian laser research, 2023-03, Vol.44 (2), p.135-147 |
issn | 1071-2836 1573-8760 |
language | eng |
recordid | cdi_proquest_journals_2821374547 |
source | SpringerNature Journals |
subjects | Absorption Capacitors Coupling Emission analysis Garbage Gates Lasers Microwaves Noise Optical Devices Optics Photonics Physics Physics and Astronomy Quantum entanglement Qubits (quantum computing) RF and Optical Engineering Time dependence |
title | Noise-Tolerant Superconducting Gates with High Fidelity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-Tolerant%20Superconducting%20Gates%20with%20High%20Fidelity&rft.jtitle=Journal%20of%20Russian%20laser%20research&rft.au=Khan,%20Junaid&rft.date=2023-03-01&rft.volume=44&rft.issue=2&rft.spage=135&rft.epage=147&rft.pages=135-147&rft.issn=1071-2836&rft.eissn=1573-8760&rft_id=info:doi/10.1007/s10946-023-10116-y&rft_dat=%3Cproquest_cross%3E2821374547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821374547&rft_id=info:pmid/&rfr_iscdi=true |