Just a Glimpse: Rethinking Temporal Information for Video Continual Learning

Class-incremental learning is one of the most important settings for the study of Continual Learning, as it closely resembles real-world application scenarios. With constrained memory sizes, catastrophic forgetting arises as the number of classes/tasks increases. Studying continual learning in the v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Alssum, Lama, Juan Leon Alcazar, Ramazanova, Merey, Chen, Zhao, Ghanem, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Alssum, Lama
Juan Leon Alcazar
Ramazanova, Merey
Chen, Zhao
Ghanem, Bernard
description Class-incremental learning is one of the most important settings for the study of Continual Learning, as it closely resembles real-world application scenarios. With constrained memory sizes, catastrophic forgetting arises as the number of classes/tasks increases. Studying continual learning in the video domain poses even more challenges, as video data contains a large number of frames, which places a higher burden on the replay memory. The current common practice is to sub-sample frames from the video stream and store them in the replay memory. In this paper, we propose SMILE a novel replay mechanism for effective video continual learning based on individual/single frames. Through extensive experimentation, we show that under extreme memory constraints, video diversity plays a more significant role than temporal information. Therefore, our method focuses on learning from a small number of frames that represent a large number of unique videos. On three representative video datasets, Kinetics, UCF101, and ActivityNet, the proposed method achieves state-of-the-art performance, outperforming the previous state-of-the-art by up to 21.49%.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2821112852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821112852</sourcerecordid><originalsourceid>FETCH-proquest_journals_28211128523</originalsourceid><addsrcrecordid>eNqNi8sKwjAQRYMgWLT_MOC60EysFrfFJ11JcVsCppraTmoe_28WfoCrc-HcM2MJCsGzcoO4YKlzfZ7nuN1hUYiE1dfgPEg4DXqcnNrDTfmXpremJzRqnIyVA1yoM3aUXhuCuOCuH8pAZchrCtHXSlqKxYrNOzk4lf64ZOvjoanO2WTNJyjn294ES1G1WCLnHMsCxX-vLyjvPTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821112852</pqid></control><display><type>article</type><title>Just a Glimpse: Rethinking Temporal Information for Video Continual Learning</title><source>Free E- Journals</source><creator>Alssum, Lama ; Juan Leon Alcazar ; Ramazanova, Merey ; Chen, Zhao ; Ghanem, Bernard</creator><creatorcontrib>Alssum, Lama ; Juan Leon Alcazar ; Ramazanova, Merey ; Chen, Zhao ; Ghanem, Bernard</creatorcontrib><description>Class-incremental learning is one of the most important settings for the study of Continual Learning, as it closely resembles real-world application scenarios. With constrained memory sizes, catastrophic forgetting arises as the number of classes/tasks increases. Studying continual learning in the video domain poses even more challenges, as video data contains a large number of frames, which places a higher burden on the replay memory. The current common practice is to sub-sample frames from the video stream and store them in the replay memory. In this paper, we propose SMILE a novel replay mechanism for effective video continual learning based on individual/single frames. Through extensive experimentation, we show that under extreme memory constraints, video diversity plays a more significant role than temporal information. Therefore, our method focuses on learning from a small number of frames that represent a large number of unique videos. On three representative video datasets, Kinetics, UCF101, and ActivityNet, the proposed method achieves state-of-the-art performance, outperforming the previous state-of-the-art by up to 21.49%.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Constraints ; Frames (data processing) ; Learning ; Video data</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Alssum, Lama</creatorcontrib><creatorcontrib>Juan Leon Alcazar</creatorcontrib><creatorcontrib>Ramazanova, Merey</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Ghanem, Bernard</creatorcontrib><title>Just a Glimpse: Rethinking Temporal Information for Video Continual Learning</title><title>arXiv.org</title><description>Class-incremental learning is one of the most important settings for the study of Continual Learning, as it closely resembles real-world application scenarios. With constrained memory sizes, catastrophic forgetting arises as the number of classes/tasks increases. Studying continual learning in the video domain poses even more challenges, as video data contains a large number of frames, which places a higher burden on the replay memory. The current common practice is to sub-sample frames from the video stream and store them in the replay memory. In this paper, we propose SMILE a novel replay mechanism for effective video continual learning based on individual/single frames. Through extensive experimentation, we show that under extreme memory constraints, video diversity plays a more significant role than temporal information. Therefore, our method focuses on learning from a small number of frames that represent a large number of unique videos. On three representative video datasets, Kinetics, UCF101, and ActivityNet, the proposed method achieves state-of-the-art performance, outperforming the previous state-of-the-art by up to 21.49%.</description><subject>Constraints</subject><subject>Frames (data processing)</subject><subject>Learning</subject><subject>Video data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKwjAQRYMgWLT_MOC60EysFrfFJ11JcVsCppraTmoe_28WfoCrc-HcM2MJCsGzcoO4YKlzfZ7nuN1hUYiE1dfgPEg4DXqcnNrDTfmXpremJzRqnIyVA1yoM3aUXhuCuOCuH8pAZchrCtHXSlqKxYrNOzk4lf64ZOvjoanO2WTNJyjn294ES1G1WCLnHMsCxX-vLyjvPTs</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Alssum, Lama</creator><creator>Juan Leon Alcazar</creator><creator>Ramazanova, Merey</creator><creator>Chen, Zhao</creator><creator>Ghanem, Bernard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230628</creationdate><title>Just a Glimpse: Rethinking Temporal Information for Video Continual Learning</title><author>Alssum, Lama ; Juan Leon Alcazar ; Ramazanova, Merey ; Chen, Zhao ; Ghanem, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28211128523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Constraints</topic><topic>Frames (data processing)</topic><topic>Learning</topic><topic>Video data</topic><toplevel>online_resources</toplevel><creatorcontrib>Alssum, Lama</creatorcontrib><creatorcontrib>Juan Leon Alcazar</creatorcontrib><creatorcontrib>Ramazanova, Merey</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Ghanem, Bernard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alssum, Lama</au><au>Juan Leon Alcazar</au><au>Ramazanova, Merey</au><au>Chen, Zhao</au><au>Ghanem, Bernard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Just a Glimpse: Rethinking Temporal Information for Video Continual Learning</atitle><jtitle>arXiv.org</jtitle><date>2023-06-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Class-incremental learning is one of the most important settings for the study of Continual Learning, as it closely resembles real-world application scenarios. With constrained memory sizes, catastrophic forgetting arises as the number of classes/tasks increases. Studying continual learning in the video domain poses even more challenges, as video data contains a large number of frames, which places a higher burden on the replay memory. The current common practice is to sub-sample frames from the video stream and store them in the replay memory. In this paper, we propose SMILE a novel replay mechanism for effective video continual learning based on individual/single frames. Through extensive experimentation, we show that under extreme memory constraints, video diversity plays a more significant role than temporal information. Therefore, our method focuses on learning from a small number of frames that represent a large number of unique videos. On three representative video datasets, Kinetics, UCF101, and ActivityNet, the proposed method achieves state-of-the-art performance, outperforming the previous state-of-the-art by up to 21.49%.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2821112852
source Free E- Journals
subjects Constraints
Frames (data processing)
Learning
Video data
title Just a Glimpse: Rethinking Temporal Information for Video Continual Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Just%20a%20Glimpse:%20Rethinking%20Temporal%20Information%20for%20Video%20Continual%20Learning&rft.jtitle=arXiv.org&rft.au=Alssum,%20Lama&rft.date=2023-06-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2821112852%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821112852&rft_id=info:pmid/&rfr_iscdi=true