Growth of nanostructured molybdenum disulfide (MoS2) thin films on a nanohole-patterned substrate using plasma-enhanced atomic layer deposition (ALD)

Nanostructured molybdenum disulfide (MoS2) thin films were grown on a nanohole-patterned silicon substrate using plasma-enhanced atomic layer deposition. A nanoscale hole-patterned silicon substrate was fabricated for the growth of MoS2 film using the self-assembly-based nanofabrication method. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2023-05, Vol.13 (5), p.055111-055111-7
Hauptverfasser: Xiao, Zhigang, Doerk, Gregory, Kisslinger, Kim, Jones, Abram, Monikandan, Rebhadevi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 055111-7
container_issue 5
container_start_page 055111
container_title AIP advances
container_volume 13
creator Xiao, Zhigang
Doerk, Gregory
Kisslinger, Kim
Jones, Abram
Monikandan, Rebhadevi
description Nanostructured molybdenum disulfide (MoS2) thin films were grown on a nanohole-patterned silicon substrate using plasma-enhanced atomic layer deposition. A nanoscale hole-patterned silicon substrate was fabricated for the growth of MoS2 film using the self-assembly-based nanofabrication method. The nanoscale holes can significantly increase the surface area of the substrate while the formation and growth of nanostructures normally start at the surface of the substrate. Hydrogen sulfide (H2S) gas was used as the S source in the growth of molybdenum disulfide (MoS2) while molybdenum (V) chloride (MoCl5) powder was used as the Mo source. The MoS2 film had a stoichiometric ratio of 1 (Mo) to 2 (S), and had peaks of E12g and A1g, which represent the in-plane and out-plane vibration modes of the Mo–S bond, respectively. It was found that the MoS2 film grown in the nanoscale hole, especially at the wall of the hole, has more hexagonal-like structures due to the effects of nanoscale space confinement and the nanoscale interface although the film shows an amorphous structure. Post-growth high-temperature annealing ranging from 800 to 900 °C produced local crystalline structures in the film, which are compatible with those reported by other researchers.
doi_str_mv 10.1063/5.0153256
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2821082290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2fcd9712a18441ada419b9b9ebc73dca</doaj_id><sourcerecordid>2821082290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-81032ab2b4bc27c8fdbc75c45e103a1a07eaabe35ac4d426e523eed806a8003b3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEElXpgTew4NJFSvGfOJscq0JLpUUcgLM1sSeNV4kdbAe0D8L71ttUBQkJ--CR5zff2PMVxWtGLxitxXt5QZkUXNbPihPOZFMKzuvnf8Uvi7MY9zSvqmW0qU6K3zfB_0oD8T1x4HxMYdFpCWjI5MdDZ9AtEzE2LmNvDZLzz_4r35A0WEd6O06ReEfgoXTwI5YzpITB5fK4dFkMEpIlWndH5hHiBCW6AZzOeUh-spqMcMBADM4-2mSz2Pnl7sPmVfGihzHi2eN5Wny__vjt6lO5-3Jze3W5K3XFZCobRgWHjndVp_lWN73p9FbqSmJOAAO6RYAOhQRdmYrXKLlANA2toaFUdOK0uF11jYe9moOdIByUB6seLny4UxCS1SMq3mvTbhkH1lQVAwMVa7u8MbcURkPWerNq5SFaFbVNqAftnUOdFGubthYsQ29XaA7-x4Ixqb1fgst_VLzh2RLOW5qpzUrp4GMM2D89jVF1dFpJ9eh0Zt-t7LEjHEf4BP_04Q-oZtP_D_5X-R4Am7ht</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821082290</pqid></control><display><type>article</type><title>Growth of nanostructured molybdenum disulfide (MoS2) thin films on a nanohole-patterned substrate using plasma-enhanced atomic layer deposition (ALD)</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xiao, Zhigang ; Doerk, Gregory ; Kisslinger, Kim ; Jones, Abram ; Monikandan, Rebhadevi</creator><creatorcontrib>Xiao, Zhigang ; Doerk, Gregory ; Kisslinger, Kim ; Jones, Abram ; Monikandan, Rebhadevi ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Nanostructured molybdenum disulfide (MoS2) thin films were grown on a nanohole-patterned silicon substrate using plasma-enhanced atomic layer deposition. A nanoscale hole-patterned silicon substrate was fabricated for the growth of MoS2 film using the self-assembly-based nanofabrication method. The nanoscale holes can significantly increase the surface area of the substrate while the formation and growth of nanostructures normally start at the surface of the substrate. Hydrogen sulfide (H2S) gas was used as the S source in the growth of molybdenum disulfide (MoS2) while molybdenum (V) chloride (MoCl5) powder was used as the Mo source. The MoS2 film had a stoichiometric ratio of 1 (Mo) to 2 (S), and had peaks of E12g and A1g, which represent the in-plane and out-plane vibration modes of the Mo–S bond, respectively. It was found that the MoS2 film grown in the nanoscale hole, especially at the wall of the hole, has more hexagonal-like structures due to the effects of nanoscale space confinement and the nanoscale interface although the film shows an amorphous structure. Post-growth high-temperature annealing ranging from 800 to 900 °C produced local crystalline structures in the film, which are compatible with those reported by other researchers.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0153256</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Atomic layer epitaxy ; Crystal structure ; High temperature ; Hydrogen sulfide ; Molybdenum ; Molybdenum disulfide ; Nanofabrication ; Nanomaterials ; NANOSCIENCE AND NANOTECHNOLOGY ; Nanostructure ; Plasma enhanced atomic layer deposition ; Plasma processing ; Polymers ; Raman spectroscopy ; Scanning electron microscopy ; Self-assembly ; Silicon substrates ; Thin films ; Transition metal chalcogenides ; Vibration mode</subject><ispartof>AIP advances, 2023-05, Vol.13 (5), p.055111-055111-7</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c415t-81032ab2b4bc27c8fdbc75c45e103a1a07eaabe35ac4d426e523eed806a8003b3</cites><orcidid>0000-0002-6528-7044 ; 0000-0002-1969-6891 ; 0000-0002-2933-2047 ; 0000-0002-1595-0565 ; 0009-0005-0015-6616 ; 0000000229332047 ; 0009000500156616 ; 0000000215950565 ; 0000000265287044 ; 0000000219696891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,2096,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1989631$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Zhigang</creatorcontrib><creatorcontrib>Doerk, Gregory</creatorcontrib><creatorcontrib>Kisslinger, Kim</creatorcontrib><creatorcontrib>Jones, Abram</creatorcontrib><creatorcontrib>Monikandan, Rebhadevi</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Growth of nanostructured molybdenum disulfide (MoS2) thin films on a nanohole-patterned substrate using plasma-enhanced atomic layer deposition (ALD)</title><title>AIP advances</title><description>Nanostructured molybdenum disulfide (MoS2) thin films were grown on a nanohole-patterned silicon substrate using plasma-enhanced atomic layer deposition. A nanoscale hole-patterned silicon substrate was fabricated for the growth of MoS2 film using the self-assembly-based nanofabrication method. The nanoscale holes can significantly increase the surface area of the substrate while the formation and growth of nanostructures normally start at the surface of the substrate. Hydrogen sulfide (H2S) gas was used as the S source in the growth of molybdenum disulfide (MoS2) while molybdenum (V) chloride (MoCl5) powder was used as the Mo source. The MoS2 film had a stoichiometric ratio of 1 (Mo) to 2 (S), and had peaks of E12g and A1g, which represent the in-plane and out-plane vibration modes of the Mo–S bond, respectively. It was found that the MoS2 film grown in the nanoscale hole, especially at the wall of the hole, has more hexagonal-like structures due to the effects of nanoscale space confinement and the nanoscale interface although the film shows an amorphous structure. Post-growth high-temperature annealing ranging from 800 to 900 °C produced local crystalline structures in the film, which are compatible with those reported by other researchers.</description><subject>Atomic layer epitaxy</subject><subject>Crystal structure</subject><subject>High temperature</subject><subject>Hydrogen sulfide</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Nanofabrication</subject><subject>Nanomaterials</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nanostructure</subject><subject>Plasma enhanced atomic layer deposition</subject><subject>Plasma processing</subject><subject>Polymers</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Self-assembly</subject><subject>Silicon substrates</subject><subject>Thin films</subject><subject>Transition metal chalcogenides</subject><subject>Vibration mode</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc9u1DAQxiMEElXpgTew4NJFSvGfOJscq0JLpUUcgLM1sSeNV4kdbAe0D8L71ttUBQkJ--CR5zff2PMVxWtGLxitxXt5QZkUXNbPihPOZFMKzuvnf8Uvi7MY9zSvqmW0qU6K3zfB_0oD8T1x4HxMYdFpCWjI5MdDZ9AtEzE2LmNvDZLzz_4r35A0WEd6O06ReEfgoXTwI5YzpITB5fK4dFkMEpIlWndH5hHiBCW6AZzOeUh-spqMcMBADM4-2mSz2Pnl7sPmVfGihzHi2eN5Wny__vjt6lO5-3Jze3W5K3XFZCobRgWHjndVp_lWN73p9FbqSmJOAAO6RYAOhQRdmYrXKLlANA2toaFUdOK0uF11jYe9moOdIByUB6seLny4UxCS1SMq3mvTbhkH1lQVAwMVa7u8MbcURkPWerNq5SFaFbVNqAftnUOdFGubthYsQ29XaA7-x4Ixqb1fgst_VLzh2RLOW5qpzUrp4GMM2D89jVF1dFpJ9eh0Zt-t7LEjHEf4BP_04Q-oZtP_D_5X-R4Am7ht</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Xiao, Zhigang</creator><creator>Doerk, Gregory</creator><creator>Kisslinger, Kim</creator><creator>Jones, Abram</creator><creator>Monikandan, Rebhadevi</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6528-7044</orcidid><orcidid>https://orcid.org/0000-0002-1969-6891</orcidid><orcidid>https://orcid.org/0000-0002-2933-2047</orcidid><orcidid>https://orcid.org/0000-0002-1595-0565</orcidid><orcidid>https://orcid.org/0009-0005-0015-6616</orcidid><orcidid>https://orcid.org/0000000229332047</orcidid><orcidid>https://orcid.org/0009000500156616</orcidid><orcidid>https://orcid.org/0000000215950565</orcidid><orcidid>https://orcid.org/0000000265287044</orcidid><orcidid>https://orcid.org/0000000219696891</orcidid></search><sort><creationdate>20230501</creationdate><title>Growth of nanostructured molybdenum disulfide (MoS2) thin films on a nanohole-patterned substrate using plasma-enhanced atomic layer deposition (ALD)</title><author>Xiao, Zhigang ; Doerk, Gregory ; Kisslinger, Kim ; Jones, Abram ; Monikandan, Rebhadevi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-81032ab2b4bc27c8fdbc75c45e103a1a07eaabe35ac4d426e523eed806a8003b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic layer epitaxy</topic><topic>Crystal structure</topic><topic>High temperature</topic><topic>Hydrogen sulfide</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Nanofabrication</topic><topic>Nanomaterials</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nanostructure</topic><topic>Plasma enhanced atomic layer deposition</topic><topic>Plasma processing</topic><topic>Polymers</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Self-assembly</topic><topic>Silicon substrates</topic><topic>Thin films</topic><topic>Transition metal chalcogenides</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Zhigang</creatorcontrib><creatorcontrib>Doerk, Gregory</creatorcontrib><creatorcontrib>Kisslinger, Kim</creatorcontrib><creatorcontrib>Jones, Abram</creatorcontrib><creatorcontrib>Monikandan, Rebhadevi</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Zhigang</au><au>Doerk, Gregory</au><au>Kisslinger, Kim</au><au>Jones, Abram</au><au>Monikandan, Rebhadevi</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of nanostructured molybdenum disulfide (MoS2) thin films on a nanohole-patterned substrate using plasma-enhanced atomic layer deposition (ALD)</atitle><jtitle>AIP advances</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>055111</spage><epage>055111-7</epage><pages>055111-055111-7</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Nanostructured molybdenum disulfide (MoS2) thin films were grown on a nanohole-patterned silicon substrate using plasma-enhanced atomic layer deposition. A nanoscale hole-patterned silicon substrate was fabricated for the growth of MoS2 film using the self-assembly-based nanofabrication method. The nanoscale holes can significantly increase the surface area of the substrate while the formation and growth of nanostructures normally start at the surface of the substrate. Hydrogen sulfide (H2S) gas was used as the S source in the growth of molybdenum disulfide (MoS2) while molybdenum (V) chloride (MoCl5) powder was used as the Mo source. The MoS2 film had a stoichiometric ratio of 1 (Mo) to 2 (S), and had peaks of E12g and A1g, which represent the in-plane and out-plane vibration modes of the Mo–S bond, respectively. It was found that the MoS2 film grown in the nanoscale hole, especially at the wall of the hole, has more hexagonal-like structures due to the effects of nanoscale space confinement and the nanoscale interface although the film shows an amorphous structure. Post-growth high-temperature annealing ranging from 800 to 900 °C produced local crystalline structures in the film, which are compatible with those reported by other researchers.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0153256</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6528-7044</orcidid><orcidid>https://orcid.org/0000-0002-1969-6891</orcidid><orcidid>https://orcid.org/0000-0002-2933-2047</orcidid><orcidid>https://orcid.org/0000-0002-1595-0565</orcidid><orcidid>https://orcid.org/0009-0005-0015-6616</orcidid><orcidid>https://orcid.org/0000000229332047</orcidid><orcidid>https://orcid.org/0009000500156616</orcidid><orcidid>https://orcid.org/0000000215950565</orcidid><orcidid>https://orcid.org/0000000265287044</orcidid><orcidid>https://orcid.org/0000000219696891</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2023-05, Vol.13 (5), p.055111-055111-7
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2821082290
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Atomic layer epitaxy
Crystal structure
High temperature
Hydrogen sulfide
Molybdenum
Molybdenum disulfide
Nanofabrication
Nanomaterials
NANOSCIENCE AND NANOTECHNOLOGY
Nanostructure
Plasma enhanced atomic layer deposition
Plasma processing
Polymers
Raman spectroscopy
Scanning electron microscopy
Self-assembly
Silicon substrates
Thin films
Transition metal chalcogenides
Vibration mode
title Growth of nanostructured molybdenum disulfide (MoS2) thin films on a nanohole-patterned substrate using plasma-enhanced atomic layer deposition (ALD)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20nanostructured%20molybdenum%20disulfide%20(MoS2)%20thin%20films%20on%20a%20nanohole-patterned%20substrate%20using%20plasma-enhanced%20atomic%20layer%20deposition%20(ALD)&rft.jtitle=AIP%20advances&rft.au=Xiao,%20Zhigang&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2023-05-01&rft.volume=13&rft.issue=5&rft.spage=055111&rft.epage=055111-7&rft.pages=055111-055111-7&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0153256&rft_dat=%3Cproquest_doaj_%3E2821082290%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821082290&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_2fcd9712a18441ada419b9b9ebc73dca&rfr_iscdi=true