Reinforcement Learning-Based Near Optimization for Continuous-Time Markov Jump Singularly Perturbed Systems
The design of a suboptimal controller for continuous-time Markov jump singularly perturbed systems with partially unknown dynamics is studied in this paper. With fast and slow decomposition technique, the original Markov jump singularly perturbed systems are decomposed into fast and slow subsystems...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-06, Vol.70 (6), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 70 |
creator | Wang, Jing Peng, Chuanjun Park, Ju H. Shen, Hao Shi, Kaibo |
description | The design of a suboptimal controller for continuous-time Markov jump singularly perturbed systems with partially unknown dynamics is studied in this paper. With fast and slow decomposition technique, the original Markov jump singularly perturbed systems are decomposed into fast and slow subsystems as a new attempt. On this basis, an offline parallel Kleinman algorithm and an online parallel integral reinforcement learning algorithm are presented to cope with the different subsystems, respectively. Meanwhile, the controllers obtained by the above two algorithms are used to design the suboptimal controllers for original systems. Furthermore, the suboptimality of the proposed controllers is also discussed. Finally, an example of the electric circuit model is shown to illustrate the applicability of the proposed method. |
doi_str_mv | 10.1109/TCSII.2022.3233790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2821075688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10004979</ieee_id><sourcerecordid>2821075688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-a78f01501ed85e7215dafe528d379c24b9f3057fa9f620253f725cfbf654bdde3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqXwBxAHS5xT_Ijr5AgVj6JCES1ny0nWyG3zwHaQyq_HpT1w2llpZlfzIXRJyYhSkt8sJ4vpdMQIYyPOOJc5OUIDKkSWRE2PdzrNEylTeYrOvF8RwnLC2QCt38E2pnUl1NAEPAPtGtt8JnfaQ4Vf44rnXbC1_dHBtg2OVjxpm2Cbvu19srQ14Bft1u03fu7rDi9iuN9ot9niN3Chd0U8s9j6ALU_RydGbzxcHOYQfTzcLydPyWz-OJ3czpKSpyQkWmaGUEEoVJkAyaiotAHBsip2KVla5IYTIY3OzTg2FtxIJkpTmLFIi6oCPkTX-7uda7968EGt2t418aViGaNEinGWRRfbu0rXeu_AqM7ZWrutokTtoKo_qGoHVR2gxtDVPmQB4F-AkDSXOf8FFPR1Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821075688</pqid></control><display><type>article</type><title>Reinforcement Learning-Based Near Optimization for Continuous-Time Markov Jump Singularly Perturbed Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jing ; Peng, Chuanjun ; Park, Ju H. ; Shen, Hao ; Shi, Kaibo</creator><creatorcontrib>Wang, Jing ; Peng, Chuanjun ; Park, Ju H. ; Shen, Hao ; Shi, Kaibo</creatorcontrib><description>The design of a suboptimal controller for continuous-time Markov jump singularly perturbed systems with partially unknown dynamics is studied in this paper. With fast and slow decomposition technique, the original Markov jump singularly perturbed systems are decomposed into fast and slow subsystems as a new attempt. On this basis, an offline parallel Kleinman algorithm and an online parallel integral reinforcement learning algorithm are presented to cope with the different subsystems, respectively. Meanwhile, the controllers obtained by the above two algorithms are used to design the suboptimal controllers for original systems. Furthermore, the suboptimality of the proposed controllers is also discussed. Finally, an example of the electric circuit model is shown to illustrate the applicability of the proposed method.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2022.3233790</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Circuits ; Control systems design ; Controllers ; Decomposition ; fast and slow decomposition technique ; Integrated circuit modeling ; Machine learning ; Markov jump systems ; Markov processes ; Optimal control ; Optimization ; Performance analysis ; Reinforcement learning ; Riccati equations ; singularly perturbed systems ; Subsystems ; Switches</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-06, Vol.70 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-a78f01501ed85e7215dafe528d379c24b9f3057fa9f620253f725cfbf654bdde3</citedby><cites>FETCH-LOGICAL-c340t-a78f01501ed85e7215dafe528d379c24b9f3057fa9f620253f725cfbf654bdde3</cites><orcidid>0000-0002-5519-9016 ; 0000-0002-0218-2333 ; 0000-0002-9863-9229 ; 0000-0001-7024-6573 ; 0000-0002-3054-8339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10004979$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids></links><search><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Peng, Chuanjun</creatorcontrib><creatorcontrib>Park, Ju H.</creatorcontrib><creatorcontrib>Shen, Hao</creatorcontrib><creatorcontrib>Shi, Kaibo</creatorcontrib><title>Reinforcement Learning-Based Near Optimization for Continuous-Time Markov Jump Singularly Perturbed Systems</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>The design of a suboptimal controller for continuous-time Markov jump singularly perturbed systems with partially unknown dynamics is studied in this paper. With fast and slow decomposition technique, the original Markov jump singularly perturbed systems are decomposed into fast and slow subsystems as a new attempt. On this basis, an offline parallel Kleinman algorithm and an online parallel integral reinforcement learning algorithm are presented to cope with the different subsystems, respectively. Meanwhile, the controllers obtained by the above two algorithms are used to design the suboptimal controllers for original systems. Furthermore, the suboptimality of the proposed controllers is also discussed. Finally, an example of the electric circuit model is shown to illustrate the applicability of the proposed method.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Decomposition</subject><subject>fast and slow decomposition technique</subject><subject>Integrated circuit modeling</subject><subject>Machine learning</subject><subject>Markov jump systems</subject><subject>Markov processes</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Performance analysis</subject><subject>Reinforcement learning</subject><subject>Riccati equations</subject><subject>singularly perturbed systems</subject><subject>Subsystems</subject><subject>Switches</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EEqXwBxAHS5xT_Ijr5AgVj6JCES1ny0nWyG3zwHaQyq_HpT1w2llpZlfzIXRJyYhSkt8sJ4vpdMQIYyPOOJc5OUIDKkSWRE2PdzrNEylTeYrOvF8RwnLC2QCt38E2pnUl1NAEPAPtGtt8JnfaQ4Vf44rnXbC1_dHBtg2OVjxpm2Cbvu19srQ14Bft1u03fu7rDi9iuN9ot9niN3Chd0U8s9j6ALU_RydGbzxcHOYQfTzcLydPyWz-OJ3czpKSpyQkWmaGUEEoVJkAyaiotAHBsip2KVla5IYTIY3OzTg2FtxIJkpTmLFIi6oCPkTX-7uda7968EGt2t418aViGaNEinGWRRfbu0rXeu_AqM7ZWrutokTtoKo_qGoHVR2gxtDVPmQB4F-AkDSXOf8FFPR1Ig</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wang, Jing</creator><creator>Peng, Chuanjun</creator><creator>Park, Ju H.</creator><creator>Shen, Hao</creator><creator>Shi, Kaibo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5519-9016</orcidid><orcidid>https://orcid.org/0000-0002-0218-2333</orcidid><orcidid>https://orcid.org/0000-0002-9863-9229</orcidid><orcidid>https://orcid.org/0000-0001-7024-6573</orcidid><orcidid>https://orcid.org/0000-0002-3054-8339</orcidid></search><sort><creationdate>20230601</creationdate><title>Reinforcement Learning-Based Near Optimization for Continuous-Time Markov Jump Singularly Perturbed Systems</title><author>Wang, Jing ; Peng, Chuanjun ; Park, Ju H. ; Shen, Hao ; Shi, Kaibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-a78f01501ed85e7215dafe528d379c24b9f3057fa9f620253f725cfbf654bdde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Decomposition</topic><topic>fast and slow decomposition technique</topic><topic>Integrated circuit modeling</topic><topic>Machine learning</topic><topic>Markov jump systems</topic><topic>Markov processes</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Performance analysis</topic><topic>Reinforcement learning</topic><topic>Riccati equations</topic><topic>singularly perturbed systems</topic><topic>Subsystems</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Peng, Chuanjun</creatorcontrib><creatorcontrib>Park, Ju H.</creatorcontrib><creatorcontrib>Shen, Hao</creatorcontrib><creatorcontrib>Shi, Kaibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jing</au><au>Peng, Chuanjun</au><au>Park, Ju H.</au><au>Shen, Hao</au><au>Shi, Kaibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement Learning-Based Near Optimization for Continuous-Time Markov Jump Singularly Perturbed Systems</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>70</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>The design of a suboptimal controller for continuous-time Markov jump singularly perturbed systems with partially unknown dynamics is studied in this paper. With fast and slow decomposition technique, the original Markov jump singularly perturbed systems are decomposed into fast and slow subsystems as a new attempt. On this basis, an offline parallel Kleinman algorithm and an online parallel integral reinforcement learning algorithm are presented to cope with the different subsystems, respectively. Meanwhile, the controllers obtained by the above two algorithms are used to design the suboptimal controllers for original systems. Furthermore, the suboptimality of the proposed controllers is also discussed. Finally, an example of the electric circuit model is shown to illustrate the applicability of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2022.3233790</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5519-9016</orcidid><orcidid>https://orcid.org/0000-0002-0218-2333</orcidid><orcidid>https://orcid.org/0000-0002-9863-9229</orcidid><orcidid>https://orcid.org/0000-0001-7024-6573</orcidid><orcidid>https://orcid.org/0000-0002-3054-8339</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2023-06, Vol.70 (6), p.1-1 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_proquest_journals_2821075688 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Circuits Control systems design Controllers Decomposition fast and slow decomposition technique Integrated circuit modeling Machine learning Markov jump systems Markov processes Optimal control Optimization Performance analysis Reinforcement learning Riccati equations singularly perturbed systems Subsystems Switches |
title | Reinforcement Learning-Based Near Optimization for Continuous-Time Markov Jump Singularly Perturbed Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20Learning-Based%20Near%20Optimization%20for%20Continuous-Time%20Markov%20Jump%20Singularly%20Perturbed%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Wang,%20Jing&rft.date=2023-06-01&rft.volume=70&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2022.3233790&rft_dat=%3Cproquest_ieee_%3E2821075688%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821075688&rft_id=info:pmid/&rft_ieee_id=10004979&rfr_iscdi=true |