Reinforcement Learning-Based Near Optimization for Continuous-Time Markov Jump Singularly Perturbed Systems

The design of a suboptimal controller for continuous-time Markov jump singularly perturbed systems with partially unknown dynamics is studied in this paper. With fast and slow decomposition technique, the original Markov jump singularly perturbed systems are decomposed into fast and slow subsystems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-06, Vol.70 (6), p.1-1
Hauptverfasser: Wang, Jing, Peng, Chuanjun, Park, Ju H., Shen, Hao, Shi, Kaibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 6
container_start_page 1
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 70
creator Wang, Jing
Peng, Chuanjun
Park, Ju H.
Shen, Hao
Shi, Kaibo
description The design of a suboptimal controller for continuous-time Markov jump singularly perturbed systems with partially unknown dynamics is studied in this paper. With fast and slow decomposition technique, the original Markov jump singularly perturbed systems are decomposed into fast and slow subsystems as a new attempt. On this basis, an offline parallel Kleinman algorithm and an online parallel integral reinforcement learning algorithm are presented to cope with the different subsystems, respectively. Meanwhile, the controllers obtained by the above two algorithms are used to design the suboptimal controllers for original systems. Furthermore, the suboptimality of the proposed controllers is also discussed. Finally, an example of the electric circuit model is shown to illustrate the applicability of the proposed method.
doi_str_mv 10.1109/TCSII.2022.3233790
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2821075688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10004979</ieee_id><sourcerecordid>2821075688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-a78f01501ed85e7215dafe528d379c24b9f3057fa9f620253f725cfbf654bdde3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqXwBxAHS5xT_Ijr5AgVj6JCES1ny0nWyG3zwHaQyq_HpT1w2llpZlfzIXRJyYhSkt8sJ4vpdMQIYyPOOJc5OUIDKkSWRE2PdzrNEylTeYrOvF8RwnLC2QCt38E2pnUl1NAEPAPtGtt8JnfaQ4Vf44rnXbC1_dHBtg2OVjxpm2Cbvu19srQ14Bft1u03fu7rDi9iuN9ot9niN3Chd0U8s9j6ALU_RydGbzxcHOYQfTzcLydPyWz-OJ3czpKSpyQkWmaGUEEoVJkAyaiotAHBsip2KVla5IYTIY3OzTg2FtxIJkpTmLFIi6oCPkTX-7uda7968EGt2t418aViGaNEinGWRRfbu0rXeu_AqM7ZWrutokTtoKo_qGoHVR2gxtDVPmQB4F-AkDSXOf8FFPR1Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821075688</pqid></control><display><type>article</type><title>Reinforcement Learning-Based Near Optimization for Continuous-Time Markov Jump Singularly Perturbed Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jing ; Peng, Chuanjun ; Park, Ju H. ; Shen, Hao ; Shi, Kaibo</creator><creatorcontrib>Wang, Jing ; Peng, Chuanjun ; Park, Ju H. ; Shen, Hao ; Shi, Kaibo</creatorcontrib><description>The design of a suboptimal controller for continuous-time Markov jump singularly perturbed systems with partially unknown dynamics is studied in this paper. With fast and slow decomposition technique, the original Markov jump singularly perturbed systems are decomposed into fast and slow subsystems as a new attempt. On this basis, an offline parallel Kleinman algorithm and an online parallel integral reinforcement learning algorithm are presented to cope with the different subsystems, respectively. Meanwhile, the controllers obtained by the above two algorithms are used to design the suboptimal controllers for original systems. Furthermore, the suboptimality of the proposed controllers is also discussed. Finally, an example of the electric circuit model is shown to illustrate the applicability of the proposed method.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2022.3233790</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Circuits ; Control systems design ; Controllers ; Decomposition ; fast and slow decomposition technique ; Integrated circuit modeling ; Machine learning ; Markov jump systems ; Markov processes ; Optimal control ; Optimization ; Performance analysis ; Reinforcement learning ; Riccati equations ; singularly perturbed systems ; Subsystems ; Switches</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-06, Vol.70 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-a78f01501ed85e7215dafe528d379c24b9f3057fa9f620253f725cfbf654bdde3</citedby><cites>FETCH-LOGICAL-c340t-a78f01501ed85e7215dafe528d379c24b9f3057fa9f620253f725cfbf654bdde3</cites><orcidid>0000-0002-5519-9016 ; 0000-0002-0218-2333 ; 0000-0002-9863-9229 ; 0000-0001-7024-6573 ; 0000-0002-3054-8339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10004979$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids></links><search><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Peng, Chuanjun</creatorcontrib><creatorcontrib>Park, Ju H.</creatorcontrib><creatorcontrib>Shen, Hao</creatorcontrib><creatorcontrib>Shi, Kaibo</creatorcontrib><title>Reinforcement Learning-Based Near Optimization for Continuous-Time Markov Jump Singularly Perturbed Systems</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>The design of a suboptimal controller for continuous-time Markov jump singularly perturbed systems with partially unknown dynamics is studied in this paper. With fast and slow decomposition technique, the original Markov jump singularly perturbed systems are decomposed into fast and slow subsystems as a new attempt. On this basis, an offline parallel Kleinman algorithm and an online parallel integral reinforcement learning algorithm are presented to cope with the different subsystems, respectively. Meanwhile, the controllers obtained by the above two algorithms are used to design the suboptimal controllers for original systems. Furthermore, the suboptimality of the proposed controllers is also discussed. Finally, an example of the electric circuit model is shown to illustrate the applicability of the proposed method.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Decomposition</subject><subject>fast and slow decomposition technique</subject><subject>Integrated circuit modeling</subject><subject>Machine learning</subject><subject>Markov jump systems</subject><subject>Markov processes</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Performance analysis</subject><subject>Reinforcement learning</subject><subject>Riccati equations</subject><subject>singularly perturbed systems</subject><subject>Subsystems</subject><subject>Switches</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EEqXwBxAHS5xT_Ijr5AgVj6JCES1ny0nWyG3zwHaQyq_HpT1w2llpZlfzIXRJyYhSkt8sJ4vpdMQIYyPOOJc5OUIDKkSWRE2PdzrNEylTeYrOvF8RwnLC2QCt38E2pnUl1NAEPAPtGtt8JnfaQ4Vf44rnXbC1_dHBtg2OVjxpm2Cbvu19srQ14Bft1u03fu7rDi9iuN9ot9niN3Chd0U8s9j6ALU_RydGbzxcHOYQfTzcLydPyWz-OJ3czpKSpyQkWmaGUEEoVJkAyaiotAHBsip2KVla5IYTIY3OzTg2FtxIJkpTmLFIi6oCPkTX-7uda7968EGt2t418aViGaNEinGWRRfbu0rXeu_AqM7ZWrutokTtoKo_qGoHVR2gxtDVPmQB4F-AkDSXOf8FFPR1Ig</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wang, Jing</creator><creator>Peng, Chuanjun</creator><creator>Park, Ju H.</creator><creator>Shen, Hao</creator><creator>Shi, Kaibo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5519-9016</orcidid><orcidid>https://orcid.org/0000-0002-0218-2333</orcidid><orcidid>https://orcid.org/0000-0002-9863-9229</orcidid><orcidid>https://orcid.org/0000-0001-7024-6573</orcidid><orcidid>https://orcid.org/0000-0002-3054-8339</orcidid></search><sort><creationdate>20230601</creationdate><title>Reinforcement Learning-Based Near Optimization for Continuous-Time Markov Jump Singularly Perturbed Systems</title><author>Wang, Jing ; Peng, Chuanjun ; Park, Ju H. ; Shen, Hao ; Shi, Kaibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-a78f01501ed85e7215dafe528d379c24b9f3057fa9f620253f725cfbf654bdde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Decomposition</topic><topic>fast and slow decomposition technique</topic><topic>Integrated circuit modeling</topic><topic>Machine learning</topic><topic>Markov jump systems</topic><topic>Markov processes</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Performance analysis</topic><topic>Reinforcement learning</topic><topic>Riccati equations</topic><topic>singularly perturbed systems</topic><topic>Subsystems</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Peng, Chuanjun</creatorcontrib><creatorcontrib>Park, Ju H.</creatorcontrib><creatorcontrib>Shen, Hao</creatorcontrib><creatorcontrib>Shi, Kaibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jing</au><au>Peng, Chuanjun</au><au>Park, Ju H.</au><au>Shen, Hao</au><au>Shi, Kaibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement Learning-Based Near Optimization for Continuous-Time Markov Jump Singularly Perturbed Systems</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>70</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>The design of a suboptimal controller for continuous-time Markov jump singularly perturbed systems with partially unknown dynamics is studied in this paper. With fast and slow decomposition technique, the original Markov jump singularly perturbed systems are decomposed into fast and slow subsystems as a new attempt. On this basis, an offline parallel Kleinman algorithm and an online parallel integral reinforcement learning algorithm are presented to cope with the different subsystems, respectively. Meanwhile, the controllers obtained by the above two algorithms are used to design the suboptimal controllers for original systems. Furthermore, the suboptimality of the proposed controllers is also discussed. Finally, an example of the electric circuit model is shown to illustrate the applicability of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2022.3233790</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5519-9016</orcidid><orcidid>https://orcid.org/0000-0002-0218-2333</orcidid><orcidid>https://orcid.org/0000-0002-9863-9229</orcidid><orcidid>https://orcid.org/0000-0001-7024-6573</orcidid><orcidid>https://orcid.org/0000-0002-3054-8339</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2023-06, Vol.70 (6), p.1-1
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2821075688
source IEEE Electronic Library (IEL)
subjects Algorithms
Circuits
Control systems design
Controllers
Decomposition
fast and slow decomposition technique
Integrated circuit modeling
Machine learning
Markov jump systems
Markov processes
Optimal control
Optimization
Performance analysis
Reinforcement learning
Riccati equations
singularly perturbed systems
Subsystems
Switches
title Reinforcement Learning-Based Near Optimization for Continuous-Time Markov Jump Singularly Perturbed Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20Learning-Based%20Near%20Optimization%20for%20Continuous-Time%20Markov%20Jump%20Singularly%20Perturbed%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Wang,%20Jing&rft.date=2023-06-01&rft.volume=70&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2022.3233790&rft_dat=%3Cproquest_ieee_%3E2821075688%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821075688&rft_id=info:pmid/&rft_ieee_id=10004979&rfr_iscdi=true