Recurrent ConFormer for WiFi activity recognition

Dear Editor, Human activity recognition (HAR) using WiFi signals has been a significant task due to its potential applications in for example, healthcare services and smart homes. This letter deals with the WiFi channel state information (CSI)-based HAR task. To capture the dynamics of human activit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2023-06, Vol.10 (6), p.1-3
Hauptverfasser: Shang, Miao, Hong, Xiaopeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3
container_issue 6
container_start_page 1
container_title IEEE/CAA journal of automatica sinica
container_volume 10
creator Shang, Miao
Hong, Xiaopeng
description Dear Editor, Human activity recognition (HAR) using WiFi signals has been a significant task due to its potential applications in for example, healthcare services and smart homes. This letter deals with the WiFi channel state information (CSI)-based HAR task. To capture the dynamics of human activities well from CSI without using a huge number of training samples, we propose a recurrent model of convolution blocks and transformer encoders. Firstly, the model utilizes the convolution blocks to capture local variation and the self-attention mechanism in transformer encoders to characterize long-range dependencies. Secondly and more importantly, the recurrent architecture models the context information well within CSI signals and allows the network to deepen without scale increase, making it particularly suited to learning from a small amount of CSI samples.
doi_str_mv 10.1109/JAS.2023.123291
format Article
fullrecord <record><control><sourceid>wanfang_jour_RIE</sourceid><recordid>TN_cdi_proquest_journals_2821067289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10084426</ieee_id><wanfj_id>zdhxb_ywb202306012</wanfj_id><sourcerecordid>zdhxb_ywb202306012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-6353ee29d47f45bffcaeaf56650da71f25a892753a606d2f01ea85c1fd8f07c23</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrPXjwseBO2nUw22d1jKdYPBMEPPIY0m9QUm9Ts1lr_endZUU9vDr_3ZuYRckphTCmUk9vp4xgB2Zgiw5IekEGnaYl5dvg7C3FMRnW9AgCKPBdlNiD0wehtjMY3ySz4eYhrExMbYvLi5i5RunEfrtkn0eiw9K5xwZ-QI6veajP60SF5nl8-za7Tu_urm9n0LtUMeZMKxpkxWFZZbjO-sFYroywXgkOlcmqRq6I9jzMlQFRogRpVcE1tVVjINbIhuehzd8pb5ZdyFbbRtxvlV_X6uZD73aL7GET7TAuf9_AmhvetqZs_GgukIHIsypaa9JSOoa6jsXIT3VrFvaQgux5l26PsUmXfY-s46x3OGPOPhiLLULBvR0ps0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821067289</pqid></control><display><type>article</type><title>Recurrent ConFormer for WiFi activity recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Shang, Miao ; Hong, Xiaopeng</creator><creatorcontrib>Shang, Miao ; Hong, Xiaopeng</creatorcontrib><description>Dear Editor, Human activity recognition (HAR) using WiFi signals has been a significant task due to its potential applications in for example, healthcare services and smart homes. This letter deals with the WiFi channel state information (CSI)-based HAR task. To capture the dynamics of human activities well from CSI without using a huge number of training samples, we propose a recurrent model of convolution blocks and transformer encoders. Firstly, the model utilizes the convolution blocks to capture local variation and the self-attention mechanism in transformer encoders to characterize long-range dependencies. Secondly and more importantly, the recurrent architecture models the context information well within CSI signals and allows the network to deepen without scale increase, making it particularly suited to learning from a small amount of CSI samples.</description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2023.123291</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Coders ; Computer architecture ; Convolution ; Feature extraction ; Human activity recognition ; Smart buildings ; Task analysis ; Training ; Transformers ; Wireless fidelity</subject><ispartof>IEEE/CAA journal of automatica sinica, 2023-06, Vol.10 (6), p.1-3</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-6353ee29d47f45bffcaeaf56650da71f25a892753a606d2f01ea85c1fd8f07c23</citedby><cites>FETCH-LOGICAL-c325t-6353ee29d47f45bffcaeaf56650da71f25a892753a606d2f01ea85c1fd8f07c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zdhxb-ywb/zdhxb-ywb.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10084426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10084426$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shang, Miao</creatorcontrib><creatorcontrib>Hong, Xiaopeng</creatorcontrib><title>Recurrent ConFormer for WiFi activity recognition</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><description>Dear Editor, Human activity recognition (HAR) using WiFi signals has been a significant task due to its potential applications in for example, healthcare services and smart homes. This letter deals with the WiFi channel state information (CSI)-based HAR task. To capture the dynamics of human activities well from CSI without using a huge number of training samples, we propose a recurrent model of convolution blocks and transformer encoders. Firstly, the model utilizes the convolution blocks to capture local variation and the self-attention mechanism in transformer encoders to characterize long-range dependencies. Secondly and more importantly, the recurrent architecture models the context information well within CSI signals and allows the network to deepen without scale increase, making it particularly suited to learning from a small amount of CSI samples.</description><subject>Coders</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Feature extraction</subject><subject>Human activity recognition</subject><subject>Smart buildings</subject><subject>Task analysis</subject><subject>Training</subject><subject>Transformers</subject><subject>Wireless fidelity</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWGrPXjwseBO2nUw22d1jKdYPBMEPPIY0m9QUm9Ts1lr_endZUU9vDr_3ZuYRckphTCmUk9vp4xgB2Zgiw5IekEGnaYl5dvg7C3FMRnW9AgCKPBdlNiD0wehtjMY3ySz4eYhrExMbYvLi5i5RunEfrtkn0eiw9K5xwZ-QI6veajP60SF5nl8-za7Tu_urm9n0LtUMeZMKxpkxWFZZbjO-sFYroywXgkOlcmqRq6I9jzMlQFRogRpVcE1tVVjINbIhuehzd8pb5ZdyFbbRtxvlV_X6uZD73aL7GET7TAuf9_AmhvetqZs_GgukIHIsypaa9JSOoa6jsXIT3VrFvaQgux5l26PsUmXfY-s46x3OGPOPhiLLULBvR0ps0g</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Shang, Miao</creator><creator>Hong, Xiaopeng</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>College of Software Engineering,Xi'an Jiaotong University,Xi'an 710049,China%Harbin Institute of Technology,Harbin 150001,China</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230601</creationdate><title>Recurrent ConFormer for WiFi activity recognition</title><author>Shang, Miao ; Hong, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-6353ee29d47f45bffcaeaf56650da71f25a892753a606d2f01ea85c1fd8f07c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coders</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Feature extraction</topic><topic>Human activity recognition</topic><topic>Smart buildings</topic><topic>Task analysis</topic><topic>Training</topic><topic>Transformers</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Miao</creatorcontrib><creatorcontrib>Hong, Xiaopeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shang, Miao</au><au>Hong, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent ConFormer for WiFi activity recognition</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>10</volume><issue>6</issue><spage>1</spage><epage>3</epage><pages>1-3</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract>Dear Editor, Human activity recognition (HAR) using WiFi signals has been a significant task due to its potential applications in for example, healthcare services and smart homes. This letter deals with the WiFi channel state information (CSI)-based HAR task. To capture the dynamics of human activities well from CSI without using a huge number of training samples, we propose a recurrent model of convolution blocks and transformer encoders. Firstly, the model utilizes the convolution blocks to capture local variation and the self-attention mechanism in transformer encoders to characterize long-range dependencies. Secondly and more importantly, the recurrent architecture models the context information well within CSI signals and allows the network to deepen without scale increase, making it particularly suited to learning from a small amount of CSI samples.</abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2023.123291</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9266
ispartof IEEE/CAA journal of automatica sinica, 2023-06, Vol.10 (6), p.1-3
issn 2329-9266
2329-9274
language eng
recordid cdi_proquest_journals_2821067289
source IEEE Electronic Library (IEL)
subjects Coders
Computer architecture
Convolution
Feature extraction
Human activity recognition
Smart buildings
Task analysis
Training
Transformers
Wireless fidelity
title Recurrent ConFormer for WiFi activity recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20ConFormer%20for%20WiFi%20activity%20recognition&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Shang,%20Miao&rft.date=2023-06-01&rft.volume=10&rft.issue=6&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2023.123291&rft_dat=%3Cwanfang_jour_RIE%3Ezdhxb_ywb202306012%3C/wanfang_jour_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821067289&rft_id=info:pmid/&rft_ieee_id=10084426&rft_wanfj_id=zdhxb_ywb202306012&rfr_iscdi=true