On deferred statistical convergence of complex uncertain sequences
Complex uncertain variables are measurable functions from an uncertain space to the set of complex numbers and are used to model complex uncertain quantities. In this paper, we introduce the deferred-statistically convergence concepts of complex uncertain sequences, deferred-statistically convergenc...
Gespeichert in:
Veröffentlicht in: | Journal of applied analysis 2023-06, Vol.29 (1), p.105-112 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | 1 |
container_start_page | 105 |
container_title | Journal of applied analysis |
container_volume | 29 |
creator | Debnath, Shyamal Das, Bijoy |
description | Complex uncertain variables are measurable functions from an uncertain space to the set of complex numbers and are used to model complex uncertain quantities. In this paper, we introduce the deferred-statistically convergence concepts of complex uncertain sequences, deferred-statistically convergence almost surely, deferred-statistically convergence in measure, deferred-statistically convergence in mean and some relationship among them are discussed. |
doi_str_mv | 10.1515/jaa-2022-2006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821051555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821051555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-2f99e0b7e8cc145af9c0633081fdb39936f4cca2b57103d1ab47a80d1afe34793</originalsourceid><addsrcrecordid>eNptkM9LwzAYhoMoOKdH7wXP0fxo0gRPOpwKg130HNL0y-jo2pmk6v57UyZ48ZK8H3nyvfAgdE3JLRVU3G2txYwwlg8iT9CMKqmxJIqd5lwygaUm6hxdxLglGZOynKHHdV804CEEaIqYbGpjap3tCjf0nxA20DsoBp_H3b6D72LMc0i27YsIH-P0Gi_RmbddhKvfe47el09vixe8Wj-_Lh5W2LGKJ8y81kDqCpRztBTWa0ck50RR39Rcay596Zxltago4Q21dVlZRXLwwMtK8zm6Oe7dhyFXx2S2wxj6XGmYYpRkBUJkCh8pF4YYA3izD-3OhoOhxEyaTNZkJk1m0pT5-yP_ZbsEoYFNGA85_C3_9x_TNDfyHzJ5bkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821051555</pqid></control><display><type>article</type><title>On deferred statistical convergence of complex uncertain sequences</title><source>Alma/SFX Local Collection</source><creator>Debnath, Shyamal ; Das, Bijoy</creator><creatorcontrib>Debnath, Shyamal ; Das, Bijoy</creatorcontrib><description>Complex uncertain variables are measurable functions from an uncertain space to the set of complex numbers and are used to model complex uncertain quantities. In this paper, we introduce the deferred-statistically convergence concepts of complex uncertain sequences, deferred-statistically convergence almost surely, deferred-statistically convergence in measure, deferred-statistically convergence in mean and some relationship among them are discussed.</description><identifier>ISSN: 1425-6908</identifier><identifier>EISSN: 1869-6082</identifier><identifier>DOI: 10.1515/jaa-2022-2006</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>40A35 ; 40G15 ; 60B10 ; Complex numbers ; complex uncertain variable ; Complex variables ; Convergence ; deferred statistical convergence ; Mathematics ; Uncertainty theory ; Variables</subject><ispartof>Journal of applied analysis, 2023-06, Vol.29 (1), p.105-112</ispartof><rights>2022 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-2f99e0b7e8cc145af9c0633081fdb39936f4cca2b57103d1ab47a80d1afe34793</cites><orcidid>0000-0002-3039-5766 ; 0000-0003-2804-6564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Debnath, Shyamal</creatorcontrib><creatorcontrib>Das, Bijoy</creatorcontrib><title>On deferred statistical convergence of complex uncertain sequences</title><title>Journal of applied analysis</title><description>Complex uncertain variables are measurable functions from an uncertain space to the set of complex numbers and are used to model complex uncertain quantities. In this paper, we introduce the deferred-statistically convergence concepts of complex uncertain sequences, deferred-statistically convergence almost surely, deferred-statistically convergence in measure, deferred-statistically convergence in mean and some relationship among them are discussed.</description><subject>40A35</subject><subject>40G15</subject><subject>60B10</subject><subject>Complex numbers</subject><subject>complex uncertain variable</subject><subject>Complex variables</subject><subject>Convergence</subject><subject>deferred statistical convergence</subject><subject>Mathematics</subject><subject>Uncertainty theory</subject><subject>Variables</subject><issn>1425-6908</issn><issn>1869-6082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkM9LwzAYhoMoOKdH7wXP0fxo0gRPOpwKg130HNL0y-jo2pmk6v57UyZ48ZK8H3nyvfAgdE3JLRVU3G2txYwwlg8iT9CMKqmxJIqd5lwygaUm6hxdxLglGZOynKHHdV804CEEaIqYbGpjap3tCjf0nxA20DsoBp_H3b6D72LMc0i27YsIH-P0Gi_RmbddhKvfe47el09vixe8Wj-_Lh5W2LGKJ8y81kDqCpRztBTWa0ck50RR39Rcay596Zxltago4Q21dVlZRXLwwMtK8zm6Oe7dhyFXx2S2wxj6XGmYYpRkBUJkCh8pF4YYA3izD-3OhoOhxEyaTNZkJk1m0pT5-yP_ZbsEoYFNGA85_C3_9x_TNDfyHzJ5bkM</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Debnath, Shyamal</creator><creator>Das, Bijoy</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3039-5766</orcidid><orcidid>https://orcid.org/0000-0003-2804-6564</orcidid></search><sort><creationdate>20230601</creationdate><title>On deferred statistical convergence of complex uncertain sequences</title><author>Debnath, Shyamal ; Das, Bijoy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-2f99e0b7e8cc145af9c0633081fdb39936f4cca2b57103d1ab47a80d1afe34793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>40A35</topic><topic>40G15</topic><topic>60B10</topic><topic>Complex numbers</topic><topic>complex uncertain variable</topic><topic>Complex variables</topic><topic>Convergence</topic><topic>deferred statistical convergence</topic><topic>Mathematics</topic><topic>Uncertainty theory</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Debnath, Shyamal</creatorcontrib><creatorcontrib>Das, Bijoy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debnath, Shyamal</au><au>Das, Bijoy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On deferred statistical convergence of complex uncertain sequences</atitle><jtitle>Journal of applied analysis</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>29</volume><issue>1</issue><spage>105</spage><epage>112</epage><pages>105-112</pages><issn>1425-6908</issn><eissn>1869-6082</eissn><abstract>Complex uncertain variables are measurable functions from an uncertain space to the set of complex numbers and are used to model complex uncertain quantities. In this paper, we introduce the deferred-statistically convergence concepts of complex uncertain sequences, deferred-statistically convergence almost surely, deferred-statistically convergence in measure, deferred-statistically convergence in mean and some relationship among them are discussed.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jaa-2022-2006</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3039-5766</orcidid><orcidid>https://orcid.org/0000-0003-2804-6564</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1425-6908 |
ispartof | Journal of applied analysis, 2023-06, Vol.29 (1), p.105-112 |
issn | 1425-6908 1869-6082 |
language | eng |
recordid | cdi_proquest_journals_2821051555 |
source | Alma/SFX Local Collection |
subjects | 40A35 40G15 60B10 Complex numbers complex uncertain variable Complex variables Convergence deferred statistical convergence Mathematics Uncertainty theory Variables |
title | On deferred statistical convergence of complex uncertain sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20deferred%20statistical%20convergence%20of%20complex%20uncertain%20sequences&rft.jtitle=Journal%20of%20applied%20analysis&rft.au=Debnath,%20Shyamal&rft.date=2023-06-01&rft.volume=29&rft.issue=1&rft.spage=105&rft.epage=112&rft.pages=105-112&rft.issn=1425-6908&rft.eissn=1869-6082&rft_id=info:doi/10.1515/jaa-2022-2006&rft_dat=%3Cproquest_cross%3E2821051555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821051555&rft_id=info:pmid/&rfr_iscdi=true |