On deferred statistical convergence of complex uncertain sequences

Complex uncertain variables are measurable functions from an uncertain space to the set of complex numbers and are used to model complex uncertain quantities. In this paper, we introduce the deferred-statistically convergence concepts of complex uncertain sequences, deferred-statistically convergenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied analysis 2023-06, Vol.29 (1), p.105-112
Hauptverfasser: Debnath, Shyamal, Das, Bijoy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 1
container_start_page 105
container_title Journal of applied analysis
container_volume 29
creator Debnath, Shyamal
Das, Bijoy
description Complex uncertain variables are measurable functions from an uncertain space to the set of complex numbers and are used to model complex uncertain quantities. In this paper, we introduce the deferred-statistically convergence concepts of complex uncertain sequences, deferred-statistically convergence almost surely, deferred-statistically convergence in measure, deferred-statistically convergence in mean and some relationship among them are discussed.
doi_str_mv 10.1515/jaa-2022-2006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821051555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821051555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-2f99e0b7e8cc145af9c0633081fdb39936f4cca2b57103d1ab47a80d1afe34793</originalsourceid><addsrcrecordid>eNptkM9LwzAYhoMoOKdH7wXP0fxo0gRPOpwKg130HNL0y-jo2pmk6v57UyZ48ZK8H3nyvfAgdE3JLRVU3G2txYwwlg8iT9CMKqmxJIqd5lwygaUm6hxdxLglGZOynKHHdV804CEEaIqYbGpjap3tCjf0nxA20DsoBp_H3b6D72LMc0i27YsIH-P0Gi_RmbddhKvfe47el09vixe8Wj-_Lh5W2LGKJ8y81kDqCpRztBTWa0ck50RR39Rcay596Zxltago4Q21dVlZRXLwwMtK8zm6Oe7dhyFXx2S2wxj6XGmYYpRkBUJkCh8pF4YYA3izD-3OhoOhxEyaTNZkJk1m0pT5-yP_ZbsEoYFNGA85_C3_9x_TNDfyHzJ5bkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821051555</pqid></control><display><type>article</type><title>On deferred statistical convergence of complex uncertain sequences</title><source>Alma/SFX Local Collection</source><creator>Debnath, Shyamal ; Das, Bijoy</creator><creatorcontrib>Debnath, Shyamal ; Das, Bijoy</creatorcontrib><description>Complex uncertain variables are measurable functions from an uncertain space to the set of complex numbers and are used to model complex uncertain quantities. In this paper, we introduce the deferred-statistically convergence concepts of complex uncertain sequences, deferred-statistically convergence almost surely, deferred-statistically convergence in measure, deferred-statistically convergence in mean and some relationship among them are discussed.</description><identifier>ISSN: 1425-6908</identifier><identifier>EISSN: 1869-6082</identifier><identifier>DOI: 10.1515/jaa-2022-2006</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>40A35 ; 40G15 ; 60B10 ; Complex numbers ; complex uncertain variable ; Complex variables ; Convergence ; deferred statistical convergence ; Mathematics ; Uncertainty theory ; Variables</subject><ispartof>Journal of applied analysis, 2023-06, Vol.29 (1), p.105-112</ispartof><rights>2022 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-2f99e0b7e8cc145af9c0633081fdb39936f4cca2b57103d1ab47a80d1afe34793</cites><orcidid>0000-0002-3039-5766 ; 0000-0003-2804-6564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Debnath, Shyamal</creatorcontrib><creatorcontrib>Das, Bijoy</creatorcontrib><title>On deferred statistical convergence of complex uncertain sequences</title><title>Journal of applied analysis</title><description>Complex uncertain variables are measurable functions from an uncertain space to the set of complex numbers and are used to model complex uncertain quantities. In this paper, we introduce the deferred-statistically convergence concepts of complex uncertain sequences, deferred-statistically convergence almost surely, deferred-statistically convergence in measure, deferred-statistically convergence in mean and some relationship among them are discussed.</description><subject>40A35</subject><subject>40G15</subject><subject>60B10</subject><subject>Complex numbers</subject><subject>complex uncertain variable</subject><subject>Complex variables</subject><subject>Convergence</subject><subject>deferred statistical convergence</subject><subject>Mathematics</subject><subject>Uncertainty theory</subject><subject>Variables</subject><issn>1425-6908</issn><issn>1869-6082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkM9LwzAYhoMoOKdH7wXP0fxo0gRPOpwKg130HNL0y-jo2pmk6v57UyZ48ZK8H3nyvfAgdE3JLRVU3G2txYwwlg8iT9CMKqmxJIqd5lwygaUm6hxdxLglGZOynKHHdV804CEEaIqYbGpjap3tCjf0nxA20DsoBp_H3b6D72LMc0i27YsIH-P0Gi_RmbddhKvfe47el09vixe8Wj-_Lh5W2LGKJ8y81kDqCpRztBTWa0ck50RR39Rcay596Zxltago4Q21dVlZRXLwwMtK8zm6Oe7dhyFXx2S2wxj6XGmYYpRkBUJkCh8pF4YYA3izD-3OhoOhxEyaTNZkJk1m0pT5-yP_ZbsEoYFNGA85_C3_9x_TNDfyHzJ5bkM</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Debnath, Shyamal</creator><creator>Das, Bijoy</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3039-5766</orcidid><orcidid>https://orcid.org/0000-0003-2804-6564</orcidid></search><sort><creationdate>20230601</creationdate><title>On deferred statistical convergence of complex uncertain sequences</title><author>Debnath, Shyamal ; Das, Bijoy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-2f99e0b7e8cc145af9c0633081fdb39936f4cca2b57103d1ab47a80d1afe34793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>40A35</topic><topic>40G15</topic><topic>60B10</topic><topic>Complex numbers</topic><topic>complex uncertain variable</topic><topic>Complex variables</topic><topic>Convergence</topic><topic>deferred statistical convergence</topic><topic>Mathematics</topic><topic>Uncertainty theory</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Debnath, Shyamal</creatorcontrib><creatorcontrib>Das, Bijoy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debnath, Shyamal</au><au>Das, Bijoy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On deferred statistical convergence of complex uncertain sequences</atitle><jtitle>Journal of applied analysis</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>29</volume><issue>1</issue><spage>105</spage><epage>112</epage><pages>105-112</pages><issn>1425-6908</issn><eissn>1869-6082</eissn><abstract>Complex uncertain variables are measurable functions from an uncertain space to the set of complex numbers and are used to model complex uncertain quantities. In this paper, we introduce the deferred-statistically convergence concepts of complex uncertain sequences, deferred-statistically convergence almost surely, deferred-statistically convergence in measure, deferred-statistically convergence in mean and some relationship among them are discussed.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jaa-2022-2006</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3039-5766</orcidid><orcidid>https://orcid.org/0000-0003-2804-6564</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1425-6908
ispartof Journal of applied analysis, 2023-06, Vol.29 (1), p.105-112
issn 1425-6908
1869-6082
language eng
recordid cdi_proquest_journals_2821051555
source Alma/SFX Local Collection
subjects 40A35
40G15
60B10
Complex numbers
complex uncertain variable
Complex variables
Convergence
deferred statistical convergence
Mathematics
Uncertainty theory
Variables
title On deferred statistical convergence of complex uncertain sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20deferred%20statistical%20convergence%20of%20complex%20uncertain%20sequences&rft.jtitle=Journal%20of%20applied%20analysis&rft.au=Debnath,%20Shyamal&rft.date=2023-06-01&rft.volume=29&rft.issue=1&rft.spage=105&rft.epage=112&rft.pages=105-112&rft.issn=1425-6908&rft.eissn=1869-6082&rft_id=info:doi/10.1515/jaa-2022-2006&rft_dat=%3Cproquest_cross%3E2821051555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821051555&rft_id=info:pmid/&rfr_iscdi=true