Effect of dislocations and impurities on carrier transport in α-Ga2O3 on m-plane sapphire substrate
Carrier transport mechanism in Si-doped n-type α-Ga 2 O 3 thin film on m-plane sapphire substrate was investigated by temperature-dependent Hall effect measurements (30–300 K). All films show dislocation density of about ~ 10 10 –10 11 cm −2 . In non-degenerate α-Ga 2 O 3 , an impurity-band effect...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2023-05, Vol.38 (10), p.2645-2654 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2654 |
---|---|
container_issue | 10 |
container_start_page | 2645 |
container_title | Journal of materials research |
container_volume | 38 |
creator | Takane, Hitoshi Izumi, Hirokazu Hojo, Hajime Wakamatsu, Takeru Tanaka, Katsuhisa Kaneko, Kentaro |
description | Carrier transport mechanism in Si-doped n-type α-Ga
2
O
3
thin film on m-plane sapphire substrate was investigated by temperature-dependent Hall effect measurements (30–300 K). All films show dislocation density of about ~ 10
10
–10
11
cm
−2
. In non-degenerate α-Ga
2
O
3
, an impurity-band effect is obvious in the low temperature region, and dislocation scattering is the dominant scattering mechanism. In contrast, in degenerate α-Ga
2
O
3
, although the dislocation density is comparable to the non-degenerate one, the mobility is dominated by ionized impurity scattering, due to the heavy screening of charged dislocations. The analysis indicates that the carrier transport mechanism in α-Ga
2
O
3
with high dislocation density is different from each other depending on whether α-Ga
2
O
3
is degenerate or non-degenerate. Finally, we estimate critical dislocation density for dislocation-insensitive mobility in α-Ga
2
O
3
on sapphire substrate, and indicate that dislocation densities below ~ 1 × 10
7
–1 × 10
8
cm
−2
will be required for lightly doped drift layers in devices.
Graphical Abstract |
doi_str_mv | 10.1557/s43578-023-01015-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821009389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821009389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-39bf0b84ee3c68f004a1b0271268ea15794097132195a3d821d40119d14551ce3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyWmA33-qexR1SVglSpC8yWkzjgqk2CnQw8Fi_CM-ESJDame4bvnCt9hFwj3KJSxV2SQhWaARcMEFAxfUJmHKRkSvDFKZmB1pJxg_KcXKS0g8xAIWekXjWNrwbaNbQOad9Vbghdm6hraxoO_RjDEHyiXUsrF2PwkQ7Rtanv4kBDS78-2drxrTgCB9bvXetpcn3_FmIOY5kyPfhLcta4ffJXv3dOXh5Wz8tHttmun5b3G1YJNAMTpmyg1NJ7US10AyAdlsAL5AvtHarCSDAFCo5GOVFrjrUERFOjVAorL-bkZtrtY_c--jTYXTfGNr-0PNMARmiTKT5RVexSir6xfQwHFz8sgj3atJNNm23aH5tW55KYSinD7auPf9P_tL4BWmp3Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821009389</pqid></control><display><type>article</type><title>Effect of dislocations and impurities on carrier transport in α-Ga2O3 on m-plane sapphire substrate</title><source>SpringerNature Journals</source><creator>Takane, Hitoshi ; Izumi, Hirokazu ; Hojo, Hajime ; Wakamatsu, Takeru ; Tanaka, Katsuhisa ; Kaneko, Kentaro</creator><creatorcontrib>Takane, Hitoshi ; Izumi, Hirokazu ; Hojo, Hajime ; Wakamatsu, Takeru ; Tanaka, Katsuhisa ; Kaneko, Kentaro</creatorcontrib><description>Carrier transport mechanism in Si-doped n-type α-Ga
2
O
3
thin film on m-plane sapphire substrate was investigated by temperature-dependent Hall effect measurements (30–300 K). All films show dislocation density of about ~ 10
10
–10
11
cm
−2
. In non-degenerate α-Ga
2
O
3
, an impurity-band effect is obvious in the low temperature region, and dislocation scattering is the dominant scattering mechanism. In contrast, in degenerate α-Ga
2
O
3
, although the dislocation density is comparable to the non-degenerate one, the mobility is dominated by ionized impurity scattering, due to the heavy screening of charged dislocations. The analysis indicates that the carrier transport mechanism in α-Ga
2
O
3
with high dislocation density is different from each other depending on whether α-Ga
2
O
3
is degenerate or non-degenerate. Finally, we estimate critical dislocation density for dislocation-insensitive mobility in α-Ga
2
O
3
on sapphire substrate, and indicate that dislocation densities below ~ 1 × 10
7
–1 × 10
8
cm
−2
will be required for lightly doped drift layers in devices.
Graphical Abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-023-01015-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Carrier transport ; Chemistry and Materials Science ; Dislocation density ; Dislocation mobility ; Gallium oxides ; Hall effect ; Impurities ; Inorganic Chemistry ; Invited Paper ; Low temperature ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Sapphire ; Scattering ; Temperature dependence ; Thin films</subject><ispartof>Journal of materials research, 2023-05, Vol.38 (10), p.2645-2654</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-39bf0b84ee3c68f004a1b0271268ea15794097132195a3d821d40119d14551ce3</citedby><cites>FETCH-LOGICAL-c319t-39bf0b84ee3c68f004a1b0271268ea15794097132195a3d821d40119d14551ce3</cites><orcidid>0000-0002-1409-2802 ; 0000-0001-8866-145X ; 0000-0001-6727-8435 ; 0009-0004-2141-9529 ; 0000-0001-6626-7611 ; 0000-0001-5662-3985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-023-01015-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-023-01015-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Takane, Hitoshi</creatorcontrib><creatorcontrib>Izumi, Hirokazu</creatorcontrib><creatorcontrib>Hojo, Hajime</creatorcontrib><creatorcontrib>Wakamatsu, Takeru</creatorcontrib><creatorcontrib>Tanaka, Katsuhisa</creatorcontrib><creatorcontrib>Kaneko, Kentaro</creatorcontrib><title>Effect of dislocations and impurities on carrier transport in α-Ga2O3 on m-plane sapphire substrate</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Carrier transport mechanism in Si-doped n-type α-Ga
2
O
3
thin film on m-plane sapphire substrate was investigated by temperature-dependent Hall effect measurements (30–300 K). All films show dislocation density of about ~ 10
10
–10
11
cm
−2
. In non-degenerate α-Ga
2
O
3
, an impurity-band effect is obvious in the low temperature region, and dislocation scattering is the dominant scattering mechanism. In contrast, in degenerate α-Ga
2
O
3
, although the dislocation density is comparable to the non-degenerate one, the mobility is dominated by ionized impurity scattering, due to the heavy screening of charged dislocations. The analysis indicates that the carrier transport mechanism in α-Ga
2
O
3
with high dislocation density is different from each other depending on whether α-Ga
2
O
3
is degenerate or non-degenerate. Finally, we estimate critical dislocation density for dislocation-insensitive mobility in α-Ga
2
O
3
on sapphire substrate, and indicate that dislocation densities below ~ 1 × 10
7
–1 × 10
8
cm
−2
will be required for lightly doped drift layers in devices.
Graphical Abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Carrier transport</subject><subject>Chemistry and Materials Science</subject><subject>Dislocation density</subject><subject>Dislocation mobility</subject><subject>Gallium oxides</subject><subject>Hall effect</subject><subject>Impurities</subject><subject>Inorganic Chemistry</subject><subject>Invited Paper</subject><subject>Low temperature</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Sapphire</subject><subject>Scattering</subject><subject>Temperature dependence</subject><subject>Thin films</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyWmA33-qexR1SVglSpC8yWkzjgqk2CnQw8Fi_CM-ESJDame4bvnCt9hFwj3KJSxV2SQhWaARcMEFAxfUJmHKRkSvDFKZmB1pJxg_KcXKS0g8xAIWekXjWNrwbaNbQOad9Vbghdm6hraxoO_RjDEHyiXUsrF2PwkQ7Rtanv4kBDS78-2drxrTgCB9bvXetpcn3_FmIOY5kyPfhLcta4ffJXv3dOXh5Wz8tHttmun5b3G1YJNAMTpmyg1NJ7US10AyAdlsAL5AvtHarCSDAFCo5GOVFrjrUERFOjVAorL-bkZtrtY_c--jTYXTfGNr-0PNMARmiTKT5RVexSir6xfQwHFz8sgj3atJNNm23aH5tW55KYSinD7auPf9P_tL4BWmp3Ww</recordid><startdate>20230528</startdate><enddate>20230528</enddate><creator>Takane, Hitoshi</creator><creator>Izumi, Hirokazu</creator><creator>Hojo, Hajime</creator><creator>Wakamatsu, Takeru</creator><creator>Tanaka, Katsuhisa</creator><creator>Kaneko, Kentaro</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1409-2802</orcidid><orcidid>https://orcid.org/0000-0001-8866-145X</orcidid><orcidid>https://orcid.org/0000-0001-6727-8435</orcidid><orcidid>https://orcid.org/0009-0004-2141-9529</orcidid><orcidid>https://orcid.org/0000-0001-6626-7611</orcidid><orcidid>https://orcid.org/0000-0001-5662-3985</orcidid></search><sort><creationdate>20230528</creationdate><title>Effect of dislocations and impurities on carrier transport in α-Ga2O3 on m-plane sapphire substrate</title><author>Takane, Hitoshi ; Izumi, Hirokazu ; Hojo, Hajime ; Wakamatsu, Takeru ; Tanaka, Katsuhisa ; Kaneko, Kentaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-39bf0b84ee3c68f004a1b0271268ea15794097132195a3d821d40119d14551ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Carrier transport</topic><topic>Chemistry and Materials Science</topic><topic>Dislocation density</topic><topic>Dislocation mobility</topic><topic>Gallium oxides</topic><topic>Hall effect</topic><topic>Impurities</topic><topic>Inorganic Chemistry</topic><topic>Invited Paper</topic><topic>Low temperature</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Sapphire</topic><topic>Scattering</topic><topic>Temperature dependence</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takane, Hitoshi</creatorcontrib><creatorcontrib>Izumi, Hirokazu</creatorcontrib><creatorcontrib>Hojo, Hajime</creatorcontrib><creatorcontrib>Wakamatsu, Takeru</creatorcontrib><creatorcontrib>Tanaka, Katsuhisa</creatorcontrib><creatorcontrib>Kaneko, Kentaro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takane, Hitoshi</au><au>Izumi, Hirokazu</au><au>Hojo, Hajime</au><au>Wakamatsu, Takeru</au><au>Tanaka, Katsuhisa</au><au>Kaneko, Kentaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of dislocations and impurities on carrier transport in α-Ga2O3 on m-plane sapphire substrate</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2023-05-28</date><risdate>2023</risdate><volume>38</volume><issue>10</issue><spage>2645</spage><epage>2654</epage><pages>2645-2654</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Carrier transport mechanism in Si-doped n-type α-Ga
2
O
3
thin film on m-plane sapphire substrate was investigated by temperature-dependent Hall effect measurements (30–300 K). All films show dislocation density of about ~ 10
10
–10
11
cm
−2
. In non-degenerate α-Ga
2
O
3
, an impurity-band effect is obvious in the low temperature region, and dislocation scattering is the dominant scattering mechanism. In contrast, in degenerate α-Ga
2
O
3
, although the dislocation density is comparable to the non-degenerate one, the mobility is dominated by ionized impurity scattering, due to the heavy screening of charged dislocations. The analysis indicates that the carrier transport mechanism in α-Ga
2
O
3
with high dislocation density is different from each other depending on whether α-Ga
2
O
3
is degenerate or non-degenerate. Finally, we estimate critical dislocation density for dislocation-insensitive mobility in α-Ga
2
O
3
on sapphire substrate, and indicate that dislocation densities below ~ 1 × 10
7
–1 × 10
8
cm
−2
will be required for lightly doped drift layers in devices.
Graphical Abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-023-01015-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1409-2802</orcidid><orcidid>https://orcid.org/0000-0001-8866-145X</orcidid><orcidid>https://orcid.org/0000-0001-6727-8435</orcidid><orcidid>https://orcid.org/0009-0004-2141-9529</orcidid><orcidid>https://orcid.org/0000-0001-6626-7611</orcidid><orcidid>https://orcid.org/0000-0001-5662-3985</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2023-05, Vol.38 (10), p.2645-2654 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2821009389 |
source | SpringerNature Journals |
subjects | Applied and Technical Physics Biomaterials Carrier transport Chemistry and Materials Science Dislocation density Dislocation mobility Gallium oxides Hall effect Impurities Inorganic Chemistry Invited Paper Low temperature Materials Engineering Materials research Materials Science Nanotechnology Sapphire Scattering Temperature dependence Thin films |
title | Effect of dislocations and impurities on carrier transport in α-Ga2O3 on m-plane sapphire substrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20dislocations%20and%20impurities%20on%20carrier%20transport%20in%20%CE%B1-Ga2O3%20on%20m-plane%20sapphire%20substrate&rft.jtitle=Journal%20of%20materials%20research&rft.au=Takane,%20Hitoshi&rft.date=2023-05-28&rft.volume=38&rft.issue=10&rft.spage=2645&rft.epage=2654&rft.pages=2645-2654&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-023-01015-8&rft_dat=%3Cproquest_cross%3E2821009389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821009389&rft_id=info:pmid/&rfr_iscdi=true |