MDP-HML: an efficient detection method for multiple human disease using retinal fundus images based on hybrid learning techniques

Recently, medical image processing has improved the quality of medical images for disease prediction in humans. For multiple disease prediction (MDP), we propose an efficient detection using retinal fundus images with the help of hybrid machine learning techniques (MDP-HML). First, we introduce an i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia systems 2023-06, Vol.29 (3), p.961-979
1. Verfasser: Kavitha, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 979
container_issue 3
container_start_page 961
container_title Multimedia systems
container_volume 29
creator Kavitha, M.
description Recently, medical image processing has improved the quality of medical images for disease prediction in humans. For multiple disease prediction (MDP), we propose an efficient detection using retinal fundus images with the help of hybrid machine learning techniques (MDP-HML). First, we introduce an improved weed optimization (IWO) algorithm for segmentation which segments disease areas from the original image. Second, we develop a salp swarm optimization (SSO) algorithm for multi-feature extraction from segmented images which enhance the prediction accuracy. Third, we illustrate a new classifier, i.e., chaotic atom search optimization-based deep learning (CAS-DL) classifier for multi-disease classification for human beings with single retinal fundus image. Finally, the performance of the proposed MDP-HML technique can be analyzed with the different retinal datasets. The corresponding results can compare with the state-of-art techniques in terms of accuracy, precession, recall and F -measure. The accuracy of proposed MDP-HML technique is 20%, 22.3%, 22.7% and 32.6% higher than the existing SVMGA, ANN, SVM and PNN classifiers. The sensitivity of proposed MDP-HML technique is 12%, 13%, 14% and 15% higher than the existing SVMGA, ANN, SVM and PNN classifiers. The specificity of proposed MDP-HML technique is 12.65%, 14.34%, 14.91% and 15.23% higher than the existing SVMGA, ANN, SVM and PNN classifiers.
doi_str_mv 10.1007/s00530-022-01029-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821009382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821009382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2701-e7c7b93ca01b05deb703f1b4cb522c28acf1b50d708749b5b70e41562214a6cb3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjDzBZYjacL0mTsKHyKRXBALNlO5fWVeoUOxk68s9xKRIbk3Xy875nP4xdSLiSAOV1BCgyEIAoQALWYnvAJjLPUMiqwkM2gTpHkddTPGYnMa4AZDnNYMK-Xu7exNPL_IZrz6ltnXXkB97QQHZwvedrGpZ9w9s-8PXYDW7TEV-O60Q3LpKOxMfo_IIHGpzXHW9H34yRu7VeUOQmAQ1PNcutCa7hHengd3iqX3r3OVI8Y0et7iKd_56n7OPh_n32JOavj8-z27mwWIIUVNrS1JnVIA0UDZkSslaa3JoC0WKlbZoKaEqoyrw2RbqnXBZTRJnrqTXZKbvc925Cv9s7qFU_hvTkqLDCZLHOKkwU7ikb-hgDtWoT0l_CVklQO9Vqr1ol1epHtdqmULYPxQT7BYW_6n9S3zk5gy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821009382</pqid></control><display><type>article</type><title>MDP-HML: an efficient detection method for multiple human disease using retinal fundus images based on hybrid learning techniques</title><source>SpringerLink (Online service)</source><creator>Kavitha, M.</creator><creatorcontrib>Kavitha, M.</creatorcontrib><description>Recently, medical image processing has improved the quality of medical images for disease prediction in humans. For multiple disease prediction (MDP), we propose an efficient detection using retinal fundus images with the help of hybrid machine learning techniques (MDP-HML). First, we introduce an improved weed optimization (IWO) algorithm for segmentation which segments disease areas from the original image. Second, we develop a salp swarm optimization (SSO) algorithm for multi-feature extraction from segmented images which enhance the prediction accuracy. Third, we illustrate a new classifier, i.e., chaotic atom search optimization-based deep learning (CAS-DL) classifier for multi-disease classification for human beings with single retinal fundus image. Finally, the performance of the proposed MDP-HML technique can be analyzed with the different retinal datasets. The corresponding results can compare with the state-of-art techniques in terms of accuracy, precession, recall and F -measure. The accuracy of proposed MDP-HML technique is 20%, 22.3%, 22.7% and 32.6% higher than the existing SVMGA, ANN, SVM and PNN classifiers. The sensitivity of proposed MDP-HML technique is 12%, 13%, 14% and 15% higher than the existing SVMGA, ANN, SVM and PNN classifiers. The specificity of proposed MDP-HML technique is 12.65%, 14.34%, 14.91% and 15.23% higher than the existing SVMGA, ANN, SVM and PNN classifiers.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-022-01029-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Classifiers ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Cryptology ; Data Storage Representation ; Deep learning ; Feature extraction ; Image enhancement ; Image processing ; Image quality ; Image segmentation ; Machine learning ; Medical imaging ; Multimedia Information Systems ; Operating Systems ; Optimization ; Regular Paper ; Support vector machines</subject><ispartof>Multimedia systems, 2023-06, Vol.29 (3), p.961-979</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2701-e7c7b93ca01b05deb703f1b4cb522c28acf1b50d708749b5b70e41562214a6cb3</citedby><cites>FETCH-LOGICAL-c2701-e7c7b93ca01b05deb703f1b4cb522c28acf1b50d708749b5b70e41562214a6cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-022-01029-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-022-01029-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kavitha, M.</creatorcontrib><title>MDP-HML: an efficient detection method for multiple human disease using retinal fundus images based on hybrid learning techniques</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Recently, medical image processing has improved the quality of medical images for disease prediction in humans. For multiple disease prediction (MDP), we propose an efficient detection using retinal fundus images with the help of hybrid machine learning techniques (MDP-HML). First, we introduce an improved weed optimization (IWO) algorithm for segmentation which segments disease areas from the original image. Second, we develop a salp swarm optimization (SSO) algorithm for multi-feature extraction from segmented images which enhance the prediction accuracy. Third, we illustrate a new classifier, i.e., chaotic atom search optimization-based deep learning (CAS-DL) classifier for multi-disease classification for human beings with single retinal fundus image. Finally, the performance of the proposed MDP-HML technique can be analyzed with the different retinal datasets. The corresponding results can compare with the state-of-art techniques in terms of accuracy, precession, recall and F -measure. The accuracy of proposed MDP-HML technique is 20%, 22.3%, 22.7% and 32.6% higher than the existing SVMGA, ANN, SVM and PNN classifiers. The sensitivity of proposed MDP-HML technique is 12%, 13%, 14% and 15% higher than the existing SVMGA, ANN, SVM and PNN classifiers. The specificity of proposed MDP-HML technique is 12.65%, 14.34%, 14.91% and 15.23% higher than the existing SVMGA, ANN, SVM and PNN classifiers.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classifiers</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Multimedia Information Systems</subject><subject>Operating Systems</subject><subject>Optimization</subject><subject>Regular Paper</subject><subject>Support vector machines</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEuXjDzBZYjacL0mTsKHyKRXBALNlO5fWVeoUOxk68s9xKRIbk3Xy875nP4xdSLiSAOV1BCgyEIAoQALWYnvAJjLPUMiqwkM2gTpHkddTPGYnMa4AZDnNYMK-Xu7exNPL_IZrz6ltnXXkB97QQHZwvedrGpZ9w9s-8PXYDW7TEV-O60Q3LpKOxMfo_IIHGpzXHW9H34yRu7VeUOQmAQ1PNcutCa7hHengd3iqX3r3OVI8Y0et7iKd_56n7OPh_n32JOavj8-z27mwWIIUVNrS1JnVIA0UDZkSslaa3JoC0WKlbZoKaEqoyrw2RbqnXBZTRJnrqTXZKbvc925Cv9s7qFU_hvTkqLDCZLHOKkwU7ikb-hgDtWoT0l_CVklQO9Vqr1ol1epHtdqmULYPxQT7BYW_6n9S3zk5gy8</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Kavitha, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>MDP-HML: an efficient detection method for multiple human disease using retinal fundus images based on hybrid learning techniques</title><author>Kavitha, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2701-e7c7b93ca01b05deb703f1b4cb522c28acf1b50d708749b5b70e41562214a6cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classifiers</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Multimedia Information Systems</topic><topic>Operating Systems</topic><topic>Optimization</topic><topic>Regular Paper</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavitha, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavitha, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MDP-HML: an efficient detection method for multiple human disease using retinal fundus images based on hybrid learning techniques</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>29</volume><issue>3</issue><spage>961</spage><epage>979</epage><pages>961-979</pages><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Recently, medical image processing has improved the quality of medical images for disease prediction in humans. For multiple disease prediction (MDP), we propose an efficient detection using retinal fundus images with the help of hybrid machine learning techniques (MDP-HML). First, we introduce an improved weed optimization (IWO) algorithm for segmentation which segments disease areas from the original image. Second, we develop a salp swarm optimization (SSO) algorithm for multi-feature extraction from segmented images which enhance the prediction accuracy. Third, we illustrate a new classifier, i.e., chaotic atom search optimization-based deep learning (CAS-DL) classifier for multi-disease classification for human beings with single retinal fundus image. Finally, the performance of the proposed MDP-HML technique can be analyzed with the different retinal datasets. The corresponding results can compare with the state-of-art techniques in terms of accuracy, precession, recall and F -measure. The accuracy of proposed MDP-HML technique is 20%, 22.3%, 22.7% and 32.6% higher than the existing SVMGA, ANN, SVM and PNN classifiers. The sensitivity of proposed MDP-HML technique is 12%, 13%, 14% and 15% higher than the existing SVMGA, ANN, SVM and PNN classifiers. The specificity of proposed MDP-HML technique is 12.65%, 14.34%, 14.91% and 15.23% higher than the existing SVMGA, ANN, SVM and PNN classifiers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-022-01029-y</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0942-4962
ispartof Multimedia systems, 2023-06, Vol.29 (3), p.961-979
issn 0942-4962
1432-1882
language eng
recordid cdi_proquest_journals_2821009382
source SpringerLink (Online service)
subjects Accuracy
Algorithms
Classifiers
Computer Communication Networks
Computer Graphics
Computer Science
Cryptology
Data Storage Representation
Deep learning
Feature extraction
Image enhancement
Image processing
Image quality
Image segmentation
Machine learning
Medical imaging
Multimedia Information Systems
Operating Systems
Optimization
Regular Paper
Support vector machines
title MDP-HML: an efficient detection method for multiple human disease using retinal fundus images based on hybrid learning techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MDP-HML:%20an%20efficient%20detection%20method%20for%20multiple%20human%20disease%20using%20retinal%20fundus%20images%20based%20on%20hybrid%20learning%20techniques&rft.jtitle=Multimedia%20systems&rft.au=Kavitha,%20M.&rft.date=2023-06-01&rft.volume=29&rft.issue=3&rft.spage=961&rft.epage=979&rft.pages=961-979&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-022-01029-y&rft_dat=%3Cproquest_cross%3E2821009382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821009382&rft_id=info:pmid/&rfr_iscdi=true