CSLSEP: an ensemble pruning algorithm based on clustering soft label and sorting for facial expression recognition
Applying ensemble learning to facial expression recognition is an important research field nowadays, but all may not be better than many, the redundant learners in the classifier pool may hinder the ensemble system’s performance, so ensemble pruning is needed. Ensemble pruning selects the most suita...
Gespeichert in:
Veröffentlicht in: | Multimedia systems 2023-06, Vol.29 (3), p.1463-1479 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1479 |
---|---|
container_issue | 3 |
container_start_page | 1463 |
container_title | Multimedia systems |
container_volume | 29 |
creator | Huang, Shisong Li, Danyang Zhang, Zhuhong Wu, Yating Tang, Yumei Chen, Xing Wu, Yiqing |
description | Applying ensemble learning to facial expression recognition is an important research field nowadays, but all may not be better than many, the redundant learners in the classifier pool may hinder the ensemble system’s performance, so ensemble pruning is needed. Ensemble pruning selects the most suitable subset of classifiers to classify test samples according to the classifier competence. However, the noisy and redundant samples in the validation set will often adversely affect the evaluation of the classifier, making it impossible to select the most suitable classifier. In this paper, a novel ensemble pruning algorithm based on clustering soft label optimization and sorting for facial expression recognition is proposed. First, to increase classifier evaluation objectivity, the novel method uses the clustering optimization model to perform prototype selection and classifier clustering simultaneously. Then the accuracy-based ordering is employed to remove the redundant or poor quality learners, and keep a balance between diversity and accuracy of the ensemble system. Experimental results show that the proposed method outperforms or competes with some state-of-the-art methods on several typical facial expression datasets. |
doi_str_mv | 10.1007/s00530-023-01062-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821009365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821009365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-20146441ca77ce2de7f3119d851252a2cde9f9766fbd14d6391ed682c7c845803</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIMouK7-AU8Bz9FJ0qaNN1nWByworJ5Dmk7WLt22Ji3ov7e1gjdP8_xm4CPkksM1B8huIkAqgYGQDDgowdIjsuCJFIznuTgmC9CJYIlW4pScxbgH4JmSsCBhtd1s1y-31DYUm4iHokbahaGpmh219a4NVf9-oIWNWNK2oa4eYo9hmsbW97S2BdYjXI5l6Ke2bwP11lW2pvjZBYyxGrmArt01VT_m5-TE2zrixW9ckrf79evqkW2eH55WdxvmJNc9E8ATlSTc2SxzKErMvORcl3nKRSqscCVqrzOlfFHypFRScyxVLlzm8iTNQS7J1Xy3C-3HgLE3-3YIzfjSiFyM2rRU6bgl5i0X2hgDetOF6mDDl-FgJrdmdmtGt-bHrZkgOUOxm1Rg-Dv9D_UNAyd8ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821009365</pqid></control><display><type>article</type><title>CSLSEP: an ensemble pruning algorithm based on clustering soft label and sorting for facial expression recognition</title><source>SpringerLink Journals</source><creator>Huang, Shisong ; Li, Danyang ; Zhang, Zhuhong ; Wu, Yating ; Tang, Yumei ; Chen, Xing ; Wu, Yiqing</creator><creatorcontrib>Huang, Shisong ; Li, Danyang ; Zhang, Zhuhong ; Wu, Yating ; Tang, Yumei ; Chen, Xing ; Wu, Yiqing</creatorcontrib><description>Applying ensemble learning to facial expression recognition is an important research field nowadays, but all may not be better than many, the redundant learners in the classifier pool may hinder the ensemble system’s performance, so ensemble pruning is needed. Ensemble pruning selects the most suitable subset of classifiers to classify test samples according to the classifier competence. However, the noisy and redundant samples in the validation set will often adversely affect the evaluation of the classifier, making it impossible to select the most suitable classifier. In this paper, a novel ensemble pruning algorithm based on clustering soft label optimization and sorting for facial expression recognition is proposed. First, to increase classifier evaluation objectivity, the novel method uses the clustering optimization model to perform prototype selection and classifier clustering simultaneously. Then the accuracy-based ordering is employed to remove the redundant or poor quality learners, and keep a balance between diversity and accuracy of the ensemble system. Experimental results show that the proposed method outperforms or competes with some state-of-the-art methods on several typical facial expression datasets.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-023-01062-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classifiers ; Clustering ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Cryptology ; Data Storage Representation ; Face recognition ; Multimedia Information Systems ; Operating Systems ; Optimization models ; Redundancy ; Regular Paper ; Sorting algorithms</subject><ispartof>Multimedia systems, 2023-06, Vol.29 (3), p.1463-1479</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-20146441ca77ce2de7f3119d851252a2cde9f9766fbd14d6391ed682c7c845803</citedby><cites>FETCH-LOGICAL-c319t-20146441ca77ce2de7f3119d851252a2cde9f9766fbd14d6391ed682c7c845803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-023-01062-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-023-01062-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Huang, Shisong</creatorcontrib><creatorcontrib>Li, Danyang</creatorcontrib><creatorcontrib>Zhang, Zhuhong</creatorcontrib><creatorcontrib>Wu, Yating</creatorcontrib><creatorcontrib>Tang, Yumei</creatorcontrib><creatorcontrib>Chen, Xing</creatorcontrib><creatorcontrib>Wu, Yiqing</creatorcontrib><title>CSLSEP: an ensemble pruning algorithm based on clustering soft label and sorting for facial expression recognition</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Applying ensemble learning to facial expression recognition is an important research field nowadays, but all may not be better than many, the redundant learners in the classifier pool may hinder the ensemble system’s performance, so ensemble pruning is needed. Ensemble pruning selects the most suitable subset of classifiers to classify test samples according to the classifier competence. However, the noisy and redundant samples in the validation set will often adversely affect the evaluation of the classifier, making it impossible to select the most suitable classifier. In this paper, a novel ensemble pruning algorithm based on clustering soft label optimization and sorting for facial expression recognition is proposed. First, to increase classifier evaluation objectivity, the novel method uses the clustering optimization model to perform prototype selection and classifier clustering simultaneously. Then the accuracy-based ordering is employed to remove the redundant or poor quality learners, and keep a balance between diversity and accuracy of the ensemble system. Experimental results show that the proposed method outperforms or competes with some state-of-the-art methods on several typical facial expression datasets.</description><subject>Classifiers</subject><subject>Clustering</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Face recognition</subject><subject>Multimedia Information Systems</subject><subject>Operating Systems</subject><subject>Optimization models</subject><subject>Redundancy</subject><subject>Regular Paper</subject><subject>Sorting algorithms</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQgIMouK7-AU8Bz9FJ0qaNN1nWByworJ5Dmk7WLt22Ji3ov7e1gjdP8_xm4CPkksM1B8huIkAqgYGQDDgowdIjsuCJFIznuTgmC9CJYIlW4pScxbgH4JmSsCBhtd1s1y-31DYUm4iHokbahaGpmh219a4NVf9-oIWNWNK2oa4eYo9hmsbW97S2BdYjXI5l6Ke2bwP11lW2pvjZBYyxGrmArt01VT_m5-TE2zrixW9ckrf79evqkW2eH55WdxvmJNc9E8ATlSTc2SxzKErMvORcl3nKRSqscCVqrzOlfFHypFRScyxVLlzm8iTNQS7J1Xy3C-3HgLE3-3YIzfjSiFyM2rRU6bgl5i0X2hgDetOF6mDDl-FgJrdmdmtGt-bHrZkgOUOxm1Rg-Dv9D_UNAyd8ww</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Huang, Shisong</creator><creator>Li, Danyang</creator><creator>Zhang, Zhuhong</creator><creator>Wu, Yating</creator><creator>Tang, Yumei</creator><creator>Chen, Xing</creator><creator>Wu, Yiqing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>CSLSEP: an ensemble pruning algorithm based on clustering soft label and sorting for facial expression recognition</title><author>Huang, Shisong ; Li, Danyang ; Zhang, Zhuhong ; Wu, Yating ; Tang, Yumei ; Chen, Xing ; Wu, Yiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-20146441ca77ce2de7f3119d851252a2cde9f9766fbd14d6391ed682c7c845803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classifiers</topic><topic>Clustering</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Face recognition</topic><topic>Multimedia Information Systems</topic><topic>Operating Systems</topic><topic>Optimization models</topic><topic>Redundancy</topic><topic>Regular Paper</topic><topic>Sorting algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shisong</creatorcontrib><creatorcontrib>Li, Danyang</creatorcontrib><creatorcontrib>Zhang, Zhuhong</creatorcontrib><creatorcontrib>Wu, Yating</creatorcontrib><creatorcontrib>Tang, Yumei</creatorcontrib><creatorcontrib>Chen, Xing</creatorcontrib><creatorcontrib>Wu, Yiqing</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Shisong</au><au>Li, Danyang</au><au>Zhang, Zhuhong</au><au>Wu, Yating</au><au>Tang, Yumei</au><au>Chen, Xing</au><au>Wu, Yiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CSLSEP: an ensemble pruning algorithm based on clustering soft label and sorting for facial expression recognition</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>29</volume><issue>3</issue><spage>1463</spage><epage>1479</epage><pages>1463-1479</pages><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Applying ensemble learning to facial expression recognition is an important research field nowadays, but all may not be better than many, the redundant learners in the classifier pool may hinder the ensemble system’s performance, so ensemble pruning is needed. Ensemble pruning selects the most suitable subset of classifiers to classify test samples according to the classifier competence. However, the noisy and redundant samples in the validation set will often adversely affect the evaluation of the classifier, making it impossible to select the most suitable classifier. In this paper, a novel ensemble pruning algorithm based on clustering soft label optimization and sorting for facial expression recognition is proposed. First, to increase classifier evaluation objectivity, the novel method uses the clustering optimization model to perform prototype selection and classifier clustering simultaneously. Then the accuracy-based ordering is employed to remove the redundant or poor quality learners, and keep a balance between diversity and accuracy of the ensemble system. Experimental results show that the proposed method outperforms or competes with some state-of-the-art methods on several typical facial expression datasets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-023-01062-5</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0942-4962 |
ispartof | Multimedia systems, 2023-06, Vol.29 (3), p.1463-1479 |
issn | 0942-4962 1432-1882 |
language | eng |
recordid | cdi_proquest_journals_2821009365 |
source | SpringerLink Journals |
subjects | Classifiers Clustering Computer Communication Networks Computer Graphics Computer Science Cryptology Data Storage Representation Face recognition Multimedia Information Systems Operating Systems Optimization models Redundancy Regular Paper Sorting algorithms |
title | CSLSEP: an ensemble pruning algorithm based on clustering soft label and sorting for facial expression recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CSLSEP:%20an%20ensemble%20pruning%20algorithm%20based%20on%20clustering%20soft%20label%20and%20sorting%20for%20facial%20expression%20recognition&rft.jtitle=Multimedia%20systems&rft.au=Huang,%20Shisong&rft.date=2023-06-01&rft.volume=29&rft.issue=3&rft.spage=1463&rft.epage=1479&rft.pages=1463-1479&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-023-01062-5&rft_dat=%3Cproquest_cross%3E2821009365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821009365&rft_id=info:pmid/&rfr_iscdi=true |