CSLSEP: an ensemble pruning algorithm based on clustering soft label and sorting for facial expression recognition

Applying ensemble learning to facial expression recognition is an important research field nowadays, but all may not be better than many, the redundant learners in the classifier pool may hinder the ensemble system’s performance, so ensemble pruning is needed. Ensemble pruning selects the most suita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia systems 2023-06, Vol.29 (3), p.1463-1479
Hauptverfasser: Huang, Shisong, Li, Danyang, Zhang, Zhuhong, Wu, Yating, Tang, Yumei, Chen, Xing, Wu, Yiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1479
container_issue 3
container_start_page 1463
container_title Multimedia systems
container_volume 29
creator Huang, Shisong
Li, Danyang
Zhang, Zhuhong
Wu, Yating
Tang, Yumei
Chen, Xing
Wu, Yiqing
description Applying ensemble learning to facial expression recognition is an important research field nowadays, but all may not be better than many, the redundant learners in the classifier pool may hinder the ensemble system’s performance, so ensemble pruning is needed. Ensemble pruning selects the most suitable subset of classifiers to classify test samples according to the classifier competence. However, the noisy and redundant samples in the validation set will often adversely affect the evaluation of the classifier, making it impossible to select the most suitable classifier. In this paper, a novel ensemble pruning algorithm based on clustering soft label optimization and sorting for facial expression recognition is proposed. First, to increase classifier evaluation objectivity, the novel method uses the clustering optimization model to perform prototype selection and classifier clustering simultaneously. Then the accuracy-based ordering is employed to remove the redundant or poor quality learners, and keep a balance between diversity and accuracy of the ensemble system. Experimental results show that the proposed method outperforms or competes with some state-of-the-art methods on several typical facial expression datasets.
doi_str_mv 10.1007/s00530-023-01062-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821009365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821009365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-20146441ca77ce2de7f3119d851252a2cde9f9766fbd14d6391ed682c7c845803</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIMouK7-AU8Bz9FJ0qaNN1nWByworJ5Dmk7WLt22Ji3ov7e1gjdP8_xm4CPkksM1B8huIkAqgYGQDDgowdIjsuCJFIznuTgmC9CJYIlW4pScxbgH4JmSsCBhtd1s1y-31DYUm4iHokbahaGpmh219a4NVf9-oIWNWNK2oa4eYo9hmsbW97S2BdYjXI5l6Ke2bwP11lW2pvjZBYyxGrmArt01VT_m5-TE2zrixW9ckrf79evqkW2eH55WdxvmJNc9E8ATlSTc2SxzKErMvORcl3nKRSqscCVqrzOlfFHypFRScyxVLlzm8iTNQS7J1Xy3C-3HgLE3-3YIzfjSiFyM2rRU6bgl5i0X2hgDetOF6mDDl-FgJrdmdmtGt-bHrZkgOUOxm1Rg-Dv9D_UNAyd8ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821009365</pqid></control><display><type>article</type><title>CSLSEP: an ensemble pruning algorithm based on clustering soft label and sorting for facial expression recognition</title><source>SpringerLink Journals</source><creator>Huang, Shisong ; Li, Danyang ; Zhang, Zhuhong ; Wu, Yating ; Tang, Yumei ; Chen, Xing ; Wu, Yiqing</creator><creatorcontrib>Huang, Shisong ; Li, Danyang ; Zhang, Zhuhong ; Wu, Yating ; Tang, Yumei ; Chen, Xing ; Wu, Yiqing</creatorcontrib><description>Applying ensemble learning to facial expression recognition is an important research field nowadays, but all may not be better than many, the redundant learners in the classifier pool may hinder the ensemble system’s performance, so ensemble pruning is needed. Ensemble pruning selects the most suitable subset of classifiers to classify test samples according to the classifier competence. However, the noisy and redundant samples in the validation set will often adversely affect the evaluation of the classifier, making it impossible to select the most suitable classifier. In this paper, a novel ensemble pruning algorithm based on clustering soft label optimization and sorting for facial expression recognition is proposed. First, to increase classifier evaluation objectivity, the novel method uses the clustering optimization model to perform prototype selection and classifier clustering simultaneously. Then the accuracy-based ordering is employed to remove the redundant or poor quality learners, and keep a balance between diversity and accuracy of the ensemble system. Experimental results show that the proposed method outperforms or competes with some state-of-the-art methods on several typical facial expression datasets.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-023-01062-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classifiers ; Clustering ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Cryptology ; Data Storage Representation ; Face recognition ; Multimedia Information Systems ; Operating Systems ; Optimization models ; Redundancy ; Regular Paper ; Sorting algorithms</subject><ispartof>Multimedia systems, 2023-06, Vol.29 (3), p.1463-1479</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-20146441ca77ce2de7f3119d851252a2cde9f9766fbd14d6391ed682c7c845803</citedby><cites>FETCH-LOGICAL-c319t-20146441ca77ce2de7f3119d851252a2cde9f9766fbd14d6391ed682c7c845803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-023-01062-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-023-01062-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Huang, Shisong</creatorcontrib><creatorcontrib>Li, Danyang</creatorcontrib><creatorcontrib>Zhang, Zhuhong</creatorcontrib><creatorcontrib>Wu, Yating</creatorcontrib><creatorcontrib>Tang, Yumei</creatorcontrib><creatorcontrib>Chen, Xing</creatorcontrib><creatorcontrib>Wu, Yiqing</creatorcontrib><title>CSLSEP: an ensemble pruning algorithm based on clustering soft label and sorting for facial expression recognition</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Applying ensemble learning to facial expression recognition is an important research field nowadays, but all may not be better than many, the redundant learners in the classifier pool may hinder the ensemble system’s performance, so ensemble pruning is needed. Ensemble pruning selects the most suitable subset of classifiers to classify test samples according to the classifier competence. However, the noisy and redundant samples in the validation set will often adversely affect the evaluation of the classifier, making it impossible to select the most suitable classifier. In this paper, a novel ensemble pruning algorithm based on clustering soft label optimization and sorting for facial expression recognition is proposed. First, to increase classifier evaluation objectivity, the novel method uses the clustering optimization model to perform prototype selection and classifier clustering simultaneously. Then the accuracy-based ordering is employed to remove the redundant or poor quality learners, and keep a balance between diversity and accuracy of the ensemble system. Experimental results show that the proposed method outperforms or competes with some state-of-the-art methods on several typical facial expression datasets.</description><subject>Classifiers</subject><subject>Clustering</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Face recognition</subject><subject>Multimedia Information Systems</subject><subject>Operating Systems</subject><subject>Optimization models</subject><subject>Redundancy</subject><subject>Regular Paper</subject><subject>Sorting algorithms</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQgIMouK7-AU8Bz9FJ0qaNN1nWByworJ5Dmk7WLt22Ji3ov7e1gjdP8_xm4CPkksM1B8huIkAqgYGQDDgowdIjsuCJFIznuTgmC9CJYIlW4pScxbgH4JmSsCBhtd1s1y-31DYUm4iHokbahaGpmh219a4NVf9-oIWNWNK2oa4eYo9hmsbW97S2BdYjXI5l6Ke2bwP11lW2pvjZBYyxGrmArt01VT_m5-TE2zrixW9ckrf79evqkW2eH55WdxvmJNc9E8ATlSTc2SxzKErMvORcl3nKRSqscCVqrzOlfFHypFRScyxVLlzm8iTNQS7J1Xy3C-3HgLE3-3YIzfjSiFyM2rRU6bgl5i0X2hgDetOF6mDDl-FgJrdmdmtGt-bHrZkgOUOxm1Rg-Dv9D_UNAyd8ww</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Huang, Shisong</creator><creator>Li, Danyang</creator><creator>Zhang, Zhuhong</creator><creator>Wu, Yating</creator><creator>Tang, Yumei</creator><creator>Chen, Xing</creator><creator>Wu, Yiqing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>CSLSEP: an ensemble pruning algorithm based on clustering soft label and sorting for facial expression recognition</title><author>Huang, Shisong ; Li, Danyang ; Zhang, Zhuhong ; Wu, Yating ; Tang, Yumei ; Chen, Xing ; Wu, Yiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-20146441ca77ce2de7f3119d851252a2cde9f9766fbd14d6391ed682c7c845803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classifiers</topic><topic>Clustering</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Face recognition</topic><topic>Multimedia Information Systems</topic><topic>Operating Systems</topic><topic>Optimization models</topic><topic>Redundancy</topic><topic>Regular Paper</topic><topic>Sorting algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shisong</creatorcontrib><creatorcontrib>Li, Danyang</creatorcontrib><creatorcontrib>Zhang, Zhuhong</creatorcontrib><creatorcontrib>Wu, Yating</creatorcontrib><creatorcontrib>Tang, Yumei</creatorcontrib><creatorcontrib>Chen, Xing</creatorcontrib><creatorcontrib>Wu, Yiqing</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Shisong</au><au>Li, Danyang</au><au>Zhang, Zhuhong</au><au>Wu, Yating</au><au>Tang, Yumei</au><au>Chen, Xing</au><au>Wu, Yiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CSLSEP: an ensemble pruning algorithm based on clustering soft label and sorting for facial expression recognition</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>29</volume><issue>3</issue><spage>1463</spage><epage>1479</epage><pages>1463-1479</pages><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Applying ensemble learning to facial expression recognition is an important research field nowadays, but all may not be better than many, the redundant learners in the classifier pool may hinder the ensemble system’s performance, so ensemble pruning is needed. Ensemble pruning selects the most suitable subset of classifiers to classify test samples according to the classifier competence. However, the noisy and redundant samples in the validation set will often adversely affect the evaluation of the classifier, making it impossible to select the most suitable classifier. In this paper, a novel ensemble pruning algorithm based on clustering soft label optimization and sorting for facial expression recognition is proposed. First, to increase classifier evaluation objectivity, the novel method uses the clustering optimization model to perform prototype selection and classifier clustering simultaneously. Then the accuracy-based ordering is employed to remove the redundant or poor quality learners, and keep a balance between diversity and accuracy of the ensemble system. Experimental results show that the proposed method outperforms or competes with some state-of-the-art methods on several typical facial expression datasets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-023-01062-5</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0942-4962
ispartof Multimedia systems, 2023-06, Vol.29 (3), p.1463-1479
issn 0942-4962
1432-1882
language eng
recordid cdi_proquest_journals_2821009365
source SpringerLink Journals
subjects Classifiers
Clustering
Computer Communication Networks
Computer Graphics
Computer Science
Cryptology
Data Storage Representation
Face recognition
Multimedia Information Systems
Operating Systems
Optimization models
Redundancy
Regular Paper
Sorting algorithms
title CSLSEP: an ensemble pruning algorithm based on clustering soft label and sorting for facial expression recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CSLSEP:%20an%20ensemble%20pruning%20algorithm%20based%20on%20clustering%20soft%20label%20and%20sorting%20for%20facial%20expression%20recognition&rft.jtitle=Multimedia%20systems&rft.au=Huang,%20Shisong&rft.date=2023-06-01&rft.volume=29&rft.issue=3&rft.spage=1463&rft.epage=1479&rft.pages=1463-1479&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-023-01062-5&rft_dat=%3Cproquest_cross%3E2821009365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821009365&rft_id=info:pmid/&rfr_iscdi=true