An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies

In this work, we present an intelligent system for the automatic categorization of political documents, specifically the documents containing the parliamentary questions collected during the weekly Question Times at the Chamber of Deputies of the Italian Republic. The proposed intelligent system lev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of information technology & politics 2023-07, Vol.20 (3), p.213-234
Hauptverfasser: Cavalieri, A., Ducange, Pietro, Fabi, S., Russo, F., Tonellotto, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 3
container_start_page 213
container_title Journal of information technology & politics
container_volume 20
creator Cavalieri, A.
Ducange, Pietro
Fabi, S.
Russo, F.
Tonellotto, Nicola
description In this work, we present an intelligent system for the automatic categorization of political documents, specifically the documents containing the parliamentary questions collected during the weekly Question Times at the Chamber of Deputies of the Italian Republic. The proposed intelligent system leverages text classification models to perform the document categorization. The system is aimed at supporting and facilitating the research activities of political science scholars, who deal with comparative and longitudinal analysis of thousands of documents. To select the best classification models for our specific task, several classical machine learning and deep learning-based text classification models have been experimentally compared.
doi_str_mv 10.1080/19331681.2022.2082622
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2820853948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820853948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-5c18718a38a4384ecb02d6bbe63f4d7e2196dda013872eb21a3db6583b0fe8f83</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYsoOKd_ghDwuZqPNk3fHPNrMPBFwbeQtjdbRpvMJEXmX2-7TR99ufdyOOck_JLkmuBbggW-IyVjhAtySzGlwxCUU3qSTEY9Jbz8OP27BTlPLkLYYJzzoqSTJMwsWtgIbWtWYCMKuxChQ9p5FNeAahVh5bz5VtE4i5xGnz2E_R1NB4OgTW1UixpX991QEEbPmFxE1Rpl0Xytugr8KD_Ato8GwmVyplUb4Oq4p8n70-Pb_CVdvj4v5rNlWjORxzSviSiIUEyojIkM6grThlcVcKazpgBKSt40ChMmCgoVJYo1Fc8Fq7AGoQWbJjeH3q13-2_Ljeu9HZ6UVAyYclZmoys_uGrvQvCg5dabTvmdJFiOfOUvXznylUe-Q-7-kDN2oNWpL-fbRka1a53XXtnaBMn-r_gBsEuDJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820853948</pqid></control><display><type>article</type><title>An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies</title><source>EBSCOhost Political Science Complete</source><source>Worldwide Political Science Abstracts</source><creator>Cavalieri, A. ; Ducange, Pietro ; Fabi, S. ; Russo, F. ; Tonellotto, Nicola</creator><creatorcontrib>Cavalieri, A. ; Ducange, Pietro ; Fabi, S. ; Russo, F. ; Tonellotto, Nicola</creatorcontrib><description>In this work, we present an intelligent system for the automatic categorization of political documents, specifically the documents containing the parliamentary questions collected during the weekly Question Times at the Chamber of Deputies of the Italian Republic. The proposed intelligent system leverages text classification models to perform the document categorization. The system is aimed at supporting and facilitating the research activities of political science scholars, who deal with comparative and longitudinal analysis of thousands of documents. To select the best classification models for our specific task, several classical machine learning and deep learning-based text classification models have been experimentally compared.</description><identifier>ISSN: 1933-1681</identifier><identifier>EISSN: 1933-169X</identifier><identifier>DOI: 10.1080/19331681.2022.2082622</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Bag-of-Words ; Chambers ; Classification ; comparative agendas projects ; Deep learning ; Documents ; Intelligence ; Intelligent systems ; Machine learning ; Official documents ; parliamentary texts ; Political science ; Questions ; Text classification ; word embeddings</subject><ispartof>Journal of information technology &amp; politics, 2023-07, Vol.20 (3), p.213-234</ispartof><rights>2022 Taylor &amp; Francis 2022</rights><rights>2022 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-5c18718a38a4384ecb02d6bbe63f4d7e2196dda013872eb21a3db6583b0fe8f83</citedby><cites>FETCH-LOGICAL-c385t-5c18718a38a4384ecb02d6bbe63f4d7e2196dda013872eb21a3db6583b0fe8f83</cites><orcidid>0000-0003-4510-1350 ; 0000-0002-7427-1001 ; 0000-0002-0052-6796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Cavalieri, A.</creatorcontrib><creatorcontrib>Ducange, Pietro</creatorcontrib><creatorcontrib>Fabi, S.</creatorcontrib><creatorcontrib>Russo, F.</creatorcontrib><creatorcontrib>Tonellotto, Nicola</creatorcontrib><title>An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies</title><title>Journal of information technology &amp; politics</title><description>In this work, we present an intelligent system for the automatic categorization of political documents, specifically the documents containing the parliamentary questions collected during the weekly Question Times at the Chamber of Deputies of the Italian Republic. The proposed intelligent system leverages text classification models to perform the document categorization. The system is aimed at supporting and facilitating the research activities of political science scholars, who deal with comparative and longitudinal analysis of thousands of documents. To select the best classification models for our specific task, several classical machine learning and deep learning-based text classification models have been experimentally compared.</description><subject>Bag-of-Words</subject><subject>Chambers</subject><subject>Classification</subject><subject>comparative agendas projects</subject><subject>Deep learning</subject><subject>Documents</subject><subject>Intelligence</subject><subject>Intelligent systems</subject><subject>Machine learning</subject><subject>Official documents</subject><subject>parliamentary texts</subject><subject>Political science</subject><subject>Questions</subject><subject>Text classification</subject><subject>word embeddings</subject><issn>1933-1681</issn><issn>1933-169X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNp9kN1LwzAUxYsoOKd_ghDwuZqPNk3fHPNrMPBFwbeQtjdbRpvMJEXmX2-7TR99ufdyOOck_JLkmuBbggW-IyVjhAtySzGlwxCUU3qSTEY9Jbz8OP27BTlPLkLYYJzzoqSTJMwsWtgIbWtWYCMKuxChQ9p5FNeAahVh5bz5VtE4i5xGnz2E_R1NB4OgTW1UixpX991QEEbPmFxE1Rpl0Xytugr8KD_Ato8GwmVyplUb4Oq4p8n70-Pb_CVdvj4v5rNlWjORxzSviSiIUEyojIkM6grThlcVcKazpgBKSt40ChMmCgoVJYo1Fc8Fq7AGoQWbJjeH3q13-2_Ljeu9HZ6UVAyYclZmoys_uGrvQvCg5dabTvmdJFiOfOUvXznylUe-Q-7-kDN2oNWpL-fbRka1a53XXtnaBMn-r_gBsEuDJg</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Cavalieri, A.</creator><creator>Ducange, Pietro</creator><creator>Fabi, S.</creator><creator>Russo, F.</creator><creator>Tonellotto, Nicola</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>7UB</scope><scope>8BJ</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>FQK</scope><scope>JBE</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4510-1350</orcidid><orcidid>https://orcid.org/0000-0002-7427-1001</orcidid><orcidid>https://orcid.org/0000-0002-0052-6796</orcidid></search><sort><creationdate>20230703</creationdate><title>An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies</title><author>Cavalieri, A. ; Ducange, Pietro ; Fabi, S. ; Russo, F. ; Tonellotto, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-5c18718a38a4384ecb02d6bbe63f4d7e2196dda013872eb21a3db6583b0fe8f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bag-of-Words</topic><topic>Chambers</topic><topic>Classification</topic><topic>comparative agendas projects</topic><topic>Deep learning</topic><topic>Documents</topic><topic>Intelligence</topic><topic>Intelligent systems</topic><topic>Machine learning</topic><topic>Official documents</topic><topic>parliamentary texts</topic><topic>Political science</topic><topic>Questions</topic><topic>Text classification</topic><topic>word embeddings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavalieri, A.</creatorcontrib><creatorcontrib>Ducange, Pietro</creatorcontrib><creatorcontrib>Fabi, S.</creatorcontrib><creatorcontrib>Russo, F.</creatorcontrib><creatorcontrib>Tonellotto, Nicola</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Worldwide Political Science Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of information technology &amp; politics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavalieri, A.</au><au>Ducange, Pietro</au><au>Fabi, S.</au><au>Russo, F.</au><au>Tonellotto, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies</atitle><jtitle>Journal of information technology &amp; politics</jtitle><date>2023-07-03</date><risdate>2023</risdate><volume>20</volume><issue>3</issue><spage>213</spage><epage>234</epage><pages>213-234</pages><issn>1933-1681</issn><eissn>1933-169X</eissn><abstract>In this work, we present an intelligent system for the automatic categorization of political documents, specifically the documents containing the parliamentary questions collected during the weekly Question Times at the Chamber of Deputies of the Italian Republic. The proposed intelligent system leverages text classification models to perform the document categorization. The system is aimed at supporting and facilitating the research activities of political science scholars, who deal with comparative and longitudinal analysis of thousands of documents. To select the best classification models for our specific task, several classical machine learning and deep learning-based text classification models have been experimentally compared.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/19331681.2022.2082622</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4510-1350</orcidid><orcidid>https://orcid.org/0000-0002-7427-1001</orcidid><orcidid>https://orcid.org/0000-0002-0052-6796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1933-1681
ispartof Journal of information technology & politics, 2023-07, Vol.20 (3), p.213-234
issn 1933-1681
1933-169X
language eng
recordid cdi_proquest_journals_2820853948
source EBSCOhost Political Science Complete; Worldwide Political Science Abstracts
subjects Bag-of-Words
Chambers
Classification
comparative agendas projects
Deep learning
Documents
Intelligence
Intelligent systems
Machine learning
Official documents
parliamentary texts
Political science
Questions
Text classification
word embeddings
title An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intelligent%20system%20for%20the%20categorization%20of%20question%20time%20official%20documents%20of%20the%20Italian%20Chamber%20of%20Deputies&rft.jtitle=Journal%20of%20information%20technology%20&%20politics&rft.au=Cavalieri,%20A.&rft.date=2023-07-03&rft.volume=20&rft.issue=3&rft.spage=213&rft.epage=234&rft.pages=213-234&rft.issn=1933-1681&rft.eissn=1933-169X&rft_id=info:doi/10.1080/19331681.2022.2082622&rft_dat=%3Cproquest_cross%3E2820853948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820853948&rft_id=info:pmid/&rfr_iscdi=true