An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies
In this work, we present an intelligent system for the automatic categorization of political documents, specifically the documents containing the parliamentary questions collected during the weekly Question Times at the Chamber of Deputies of the Italian Republic. The proposed intelligent system lev...
Gespeichert in:
Veröffentlicht in: | Journal of information technology & politics 2023-07, Vol.20 (3), p.213-234 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 3 |
container_start_page | 213 |
container_title | Journal of information technology & politics |
container_volume | 20 |
creator | Cavalieri, A. Ducange, Pietro Fabi, S. Russo, F. Tonellotto, Nicola |
description | In this work, we present an intelligent system for the automatic categorization of political documents, specifically the documents containing the parliamentary questions collected during the weekly Question Times at the Chamber of Deputies of the Italian Republic. The proposed intelligent system leverages text classification models to perform the document categorization. The system is aimed at supporting and facilitating the research activities of political science scholars, who deal with comparative and longitudinal analysis of thousands of documents. To select the best classification models for our specific task, several classical machine learning and deep learning-based text classification models have been experimentally compared. |
doi_str_mv | 10.1080/19331681.2022.2082622 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2820853948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820853948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-5c18718a38a4384ecb02d6bbe63f4d7e2196dda013872eb21a3db6583b0fe8f83</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYsoOKd_ghDwuZqPNk3fHPNrMPBFwbeQtjdbRpvMJEXmX2-7TR99ufdyOOck_JLkmuBbggW-IyVjhAtySzGlwxCUU3qSTEY9Jbz8OP27BTlPLkLYYJzzoqSTJMwsWtgIbWtWYCMKuxChQ9p5FNeAahVh5bz5VtE4i5xGnz2E_R1NB4OgTW1UixpX991QEEbPmFxE1Rpl0Xytugr8KD_Ato8GwmVyplUb4Oq4p8n70-Pb_CVdvj4v5rNlWjORxzSviSiIUEyojIkM6grThlcVcKazpgBKSt40ChMmCgoVJYo1Fc8Fq7AGoQWbJjeH3q13-2_Ljeu9HZ6UVAyYclZmoys_uGrvQvCg5dabTvmdJFiOfOUvXznylUe-Q-7-kDN2oNWpL-fbRka1a53XXtnaBMn-r_gBsEuDJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820853948</pqid></control><display><type>article</type><title>An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies</title><source>EBSCOhost Political Science Complete</source><source>Worldwide Political Science Abstracts</source><creator>Cavalieri, A. ; Ducange, Pietro ; Fabi, S. ; Russo, F. ; Tonellotto, Nicola</creator><creatorcontrib>Cavalieri, A. ; Ducange, Pietro ; Fabi, S. ; Russo, F. ; Tonellotto, Nicola</creatorcontrib><description>In this work, we present an intelligent system for the automatic categorization of political documents, specifically the documents containing the parliamentary questions collected during the weekly Question Times at the Chamber of Deputies of the Italian Republic. The proposed intelligent system leverages text classification models to perform the document categorization. The system is aimed at supporting and facilitating the research activities of political science scholars, who deal with comparative and longitudinal analysis of thousands of documents. To select the best classification models for our specific task, several classical machine learning and deep learning-based text classification models have been experimentally compared.</description><identifier>ISSN: 1933-1681</identifier><identifier>EISSN: 1933-169X</identifier><identifier>DOI: 10.1080/19331681.2022.2082622</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Bag-of-Words ; Chambers ; Classification ; comparative agendas projects ; Deep learning ; Documents ; Intelligence ; Intelligent systems ; Machine learning ; Official documents ; parliamentary texts ; Political science ; Questions ; Text classification ; word embeddings</subject><ispartof>Journal of information technology & politics, 2023-07, Vol.20 (3), p.213-234</ispartof><rights>2022 Taylor & Francis 2022</rights><rights>2022 Taylor & Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-5c18718a38a4384ecb02d6bbe63f4d7e2196dda013872eb21a3db6583b0fe8f83</citedby><cites>FETCH-LOGICAL-c385t-5c18718a38a4384ecb02d6bbe63f4d7e2196dda013872eb21a3db6583b0fe8f83</cites><orcidid>0000-0003-4510-1350 ; 0000-0002-7427-1001 ; 0000-0002-0052-6796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Cavalieri, A.</creatorcontrib><creatorcontrib>Ducange, Pietro</creatorcontrib><creatorcontrib>Fabi, S.</creatorcontrib><creatorcontrib>Russo, F.</creatorcontrib><creatorcontrib>Tonellotto, Nicola</creatorcontrib><title>An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies</title><title>Journal of information technology & politics</title><description>In this work, we present an intelligent system for the automatic categorization of political documents, specifically the documents containing the parliamentary questions collected during the weekly Question Times at the Chamber of Deputies of the Italian Republic. The proposed intelligent system leverages text classification models to perform the document categorization. The system is aimed at supporting and facilitating the research activities of political science scholars, who deal with comparative and longitudinal analysis of thousands of documents. To select the best classification models for our specific task, several classical machine learning and deep learning-based text classification models have been experimentally compared.</description><subject>Bag-of-Words</subject><subject>Chambers</subject><subject>Classification</subject><subject>comparative agendas projects</subject><subject>Deep learning</subject><subject>Documents</subject><subject>Intelligence</subject><subject>Intelligent systems</subject><subject>Machine learning</subject><subject>Official documents</subject><subject>parliamentary texts</subject><subject>Political science</subject><subject>Questions</subject><subject>Text classification</subject><subject>word embeddings</subject><issn>1933-1681</issn><issn>1933-169X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNp9kN1LwzAUxYsoOKd_ghDwuZqPNk3fHPNrMPBFwbeQtjdbRpvMJEXmX2-7TR99ufdyOOck_JLkmuBbggW-IyVjhAtySzGlwxCUU3qSTEY9Jbz8OP27BTlPLkLYYJzzoqSTJMwsWtgIbWtWYCMKuxChQ9p5FNeAahVh5bz5VtE4i5xGnz2E_R1NB4OgTW1UixpX991QEEbPmFxE1Rpl0Xytugr8KD_Ato8GwmVyplUb4Oq4p8n70-Pb_CVdvj4v5rNlWjORxzSviSiIUEyojIkM6grThlcVcKazpgBKSt40ChMmCgoVJYo1Fc8Fq7AGoQWbJjeH3q13-2_Ljeu9HZ6UVAyYclZmoys_uGrvQvCg5dabTvmdJFiOfOUvXznylUe-Q-7-kDN2oNWpL-fbRka1a53XXtnaBMn-r_gBsEuDJg</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Cavalieri, A.</creator><creator>Ducange, Pietro</creator><creator>Fabi, S.</creator><creator>Russo, F.</creator><creator>Tonellotto, Nicola</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>7UB</scope><scope>8BJ</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>FQK</scope><scope>JBE</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4510-1350</orcidid><orcidid>https://orcid.org/0000-0002-7427-1001</orcidid><orcidid>https://orcid.org/0000-0002-0052-6796</orcidid></search><sort><creationdate>20230703</creationdate><title>An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies</title><author>Cavalieri, A. ; Ducange, Pietro ; Fabi, S. ; Russo, F. ; Tonellotto, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-5c18718a38a4384ecb02d6bbe63f4d7e2196dda013872eb21a3db6583b0fe8f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bag-of-Words</topic><topic>Chambers</topic><topic>Classification</topic><topic>comparative agendas projects</topic><topic>Deep learning</topic><topic>Documents</topic><topic>Intelligence</topic><topic>Intelligent systems</topic><topic>Machine learning</topic><topic>Official documents</topic><topic>parliamentary texts</topic><topic>Political science</topic><topic>Questions</topic><topic>Text classification</topic><topic>word embeddings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavalieri, A.</creatorcontrib><creatorcontrib>Ducange, Pietro</creatorcontrib><creatorcontrib>Fabi, S.</creatorcontrib><creatorcontrib>Russo, F.</creatorcontrib><creatorcontrib>Tonellotto, Nicola</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Worldwide Political Science Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of information technology & politics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavalieri, A.</au><au>Ducange, Pietro</au><au>Fabi, S.</au><au>Russo, F.</au><au>Tonellotto, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies</atitle><jtitle>Journal of information technology & politics</jtitle><date>2023-07-03</date><risdate>2023</risdate><volume>20</volume><issue>3</issue><spage>213</spage><epage>234</epage><pages>213-234</pages><issn>1933-1681</issn><eissn>1933-169X</eissn><abstract>In this work, we present an intelligent system for the automatic categorization of political documents, specifically the documents containing the parliamentary questions collected during the weekly Question Times at the Chamber of Deputies of the Italian Republic. The proposed intelligent system leverages text classification models to perform the document categorization. The system is aimed at supporting and facilitating the research activities of political science scholars, who deal with comparative and longitudinal analysis of thousands of documents. To select the best classification models for our specific task, several classical machine learning and deep learning-based text classification models have been experimentally compared.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/19331681.2022.2082622</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4510-1350</orcidid><orcidid>https://orcid.org/0000-0002-7427-1001</orcidid><orcidid>https://orcid.org/0000-0002-0052-6796</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1933-1681 |
ispartof | Journal of information technology & politics, 2023-07, Vol.20 (3), p.213-234 |
issn | 1933-1681 1933-169X |
language | eng |
recordid | cdi_proquest_journals_2820853948 |
source | EBSCOhost Political Science Complete; Worldwide Political Science Abstracts |
subjects | Bag-of-Words Chambers Classification comparative agendas projects Deep learning Documents Intelligence Intelligent systems Machine learning Official documents parliamentary texts Political science Questions Text classification word embeddings |
title | An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intelligent%20system%20for%20the%20categorization%20of%20question%20time%20official%20documents%20of%20the%20Italian%20Chamber%20of%20Deputies&rft.jtitle=Journal%20of%20information%20technology%20&%20politics&rft.au=Cavalieri,%20A.&rft.date=2023-07-03&rft.volume=20&rft.issue=3&rft.spage=213&rft.epage=234&rft.pages=213-234&rft.issn=1933-1681&rft.eissn=1933-169X&rft_id=info:doi/10.1080/19331681.2022.2082622&rft_dat=%3Cproquest_cross%3E2820853948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820853948&rft_id=info:pmid/&rfr_iscdi=true |