Operads for Symmetric Monoidal Categories
This paper gives an explicit description of the categorical operad whose algebras are precisely symmetric monoidal categories. This allows us to place the operad in a sequence of four, thus generating a sequence of four successively stricter concepts of symmetric monoidal category. A companion paper...
Gespeichert in:
Veröffentlicht in: | Theory and applications of categories 2023-01, Vol.39 (18), p.535 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | 535 |
container_title | Theory and applications of categories |
container_volume | 39 |
creator | Elmendorf, A D |
description | This paper gives an explicit description of the categorical operad whose algebras are precisely symmetric monoidal categories. This allows us to place the operad in a sequence of four, thus generating a sequence of four successively stricter concepts of symmetric monoidal category. A companion paper will use this operadic presentation to describe a vast array of underlying multicategories for a symmetric monoidal category. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2820655207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820655207</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-5500579a68a5190c4866a00f1ba0763034f23632f10db86ba2cfa8e922fc70ea3</originalsourceid><addsrcrecordid>eNotzb1qwzAUQGFRCDR1-w6GThkMV1fWtTwW05-AQ4Y0kC1c21JxSCxHsoe-fQvJdLbvPIilRJCZJnl4FE8xngAQKaelWG1HG7iLqfMh3f1eLnYKfZtu_OD7js9pxZP98aG38VksHJ-jfbk3EfuP9-_qK6u3n-vqrc5GadSUaQ2gi5LJsJYltLkhYgAnG4aCFKjcoSKFTkLXGGoYW8fGloiuLcCySsTrzR2Dv842TseTn8PwvzyiQSCtEQr1B_U8OzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820655207</pqid></control><display><type>article</type><title>Operads for Symmetric Monoidal Categories</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free E- Journals</source><creator>Elmendorf, A D</creator><creatorcontrib>Elmendorf, A D</creatorcontrib><description>This paper gives an explicit description of the categorical operad whose algebras are precisely symmetric monoidal categories. This allows us to place the operad in a sequence of four, thus generating a sequence of four successively stricter concepts of symmetric monoidal category. A companion paper will use this operadic presentation to describe a vast array of underlying multicategories for a symmetric monoidal category.</description><identifier>EISSN: 1201-561X</identifier><language>eng</language><publisher>Sackville: R. Rosebrugh</publisher><subject>Algebra ; Classification ; Symmetry ; Theoretical mathematics</subject><ispartof>Theory and applications of categories, 2023-01, Vol.39 (18), p.535</ispartof><rights>Copyright R. Rosebrugh 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Elmendorf, A D</creatorcontrib><title>Operads for Symmetric Monoidal Categories</title><title>Theory and applications of categories</title><description>This paper gives an explicit description of the categorical operad whose algebras are precisely symmetric monoidal categories. This allows us to place the operad in a sequence of four, thus generating a sequence of four successively stricter concepts of symmetric monoidal category. A companion paper will use this operadic presentation to describe a vast array of underlying multicategories for a symmetric monoidal category.</description><subject>Algebra</subject><subject>Classification</subject><subject>Symmetry</subject><subject>Theoretical mathematics</subject><issn>1201-561X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotzb1qwzAUQGFRCDR1-w6GThkMV1fWtTwW05-AQ4Y0kC1c21JxSCxHsoe-fQvJdLbvPIilRJCZJnl4FE8xngAQKaelWG1HG7iLqfMh3f1eLnYKfZtu_OD7js9pxZP98aG38VksHJ-jfbk3EfuP9-_qK6u3n-vqrc5GadSUaQ2gi5LJsJYltLkhYgAnG4aCFKjcoSKFTkLXGGoYW8fGloiuLcCySsTrzR2Dv842TseTn8PwvzyiQSCtEQr1B_U8OzM</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Elmendorf, A D</creator><general>R. Rosebrugh</general><scope>JQ2</scope></search><sort><creationdate>20230101</creationdate><title>Operads for Symmetric Monoidal Categories</title><author>Elmendorf, A D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-5500579a68a5190c4866a00f1ba0763034f23632f10db86ba2cfa8e922fc70ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Classification</topic><topic>Symmetry</topic><topic>Theoretical mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elmendorf, A D</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Theory and applications of categories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elmendorf, A D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operads for Symmetric Monoidal Categories</atitle><jtitle>Theory and applications of categories</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>39</volume><issue>18</issue><spage>535</spage><pages>535-</pages><eissn>1201-561X</eissn><abstract>This paper gives an explicit description of the categorical operad whose algebras are precisely symmetric monoidal categories. This allows us to place the operad in a sequence of four, thus generating a sequence of four successively stricter concepts of symmetric monoidal category. A companion paper will use this operadic presentation to describe a vast array of underlying multicategories for a symmetric monoidal category.</abstract><cop>Sackville</cop><pub>R. Rosebrugh</pub></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1201-561X |
ispartof | Theory and applications of categories, 2023-01, Vol.39 (18), p.535 |
issn | 1201-561X |
language | eng |
recordid | cdi_proquest_journals_2820655207 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free E- Journals |
subjects | Algebra Classification Symmetry Theoretical mathematics |
title | Operads for Symmetric Monoidal Categories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operads%20for%20Symmetric%20Monoidal%20Categories&rft.jtitle=Theory%20and%20applications%20of%20categories&rft.au=Elmendorf,%20A%20D&rft.date=2023-01-01&rft.volume=39&rft.issue=18&rft.spage=535&rft.pages=535-&rft.eissn=1201-561X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2820655207%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820655207&rft_id=info:pmid/&rfr_iscdi=true |