Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol
Bimetallic Cu materials are promising CO2 reduction electrocatalysts for the formation of valuable multicarbon products. We describe membrane-modified Ag–Cu electrocatalysts that convert CO2 to C2 products with high selectivity. While traditional Ag–Cu catalysts generate ethylene (C2H4) as the main...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-05, Vol.11 (21), p.11354-11363 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11363 |
---|---|
container_issue | 21 |
container_start_page | 11354 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Akter, Tania Barile, Christopher J |
description | Bimetallic Cu materials are promising CO2 reduction electrocatalysts for the formation of valuable multicarbon products. We describe membrane-modified Ag–Cu electrocatalysts that convert CO2 to C2 products with high selectivity. While traditional Ag–Cu catalysts generate ethylene (C2H4) as the main product, we demonstrate that product selectivity can be switched to ethanol (C2H5OH) by introducing a proton-permeable fluoropolymer. By optimizing the catalyst composition, voltage, and membrane thickness and identity, we develop a catalyst that generates C2H5OH with up to 72% faradaic efficiency, making it the most selective Ag–Cu catalyst for C2H5OH reported. Lastly, we discuss a detailed chemical mechanism that explains how the hydrophobicity of the membrane overlayer enables catalysts with switchable C2 product selectivity. |
doi_str_mv | 10.1039/d3ta00613a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2820454857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820454857</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-2cdc46087ac14f02b3839197feda4d568cc5af3b6c6f70f1c0a59c7c8315f8863</originalsourceid><addsrcrecordid>eNo9TstKxDAUDaLgoLPxCwKuq3k0abKU4gtGZqPr4fYmsRliOzYZdf7eouJdnAcczrmEXHB2xZm0104WYExzCUdkIZhiVVNbffyvjTkly5y3bD4zB61dkK8n_9ZNMPgKx6FMY0re0XYtqE8eZ49QIB1yyfQzlp7mGbGHLnnaCrqbRrfHQvNPOH7EcqAwONrH154GmMBBROpDiBj9gAcaxon60sMwpnNyEiBlv_zjM_Jyd_vcPlSr9f1je7OqdtzIUgl0WGtmGkBeByY6aaTltgneQe2UNogKguw06tCwwJGBstigkVwFY7Q8I5e_vfOz73ufy2Y77qdhntwII1itaqMa-Q0S92Cz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820454857</pqid></control><display><type>article</type><title>Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol</title><source>Royal Society Of Chemistry Journals</source><creator>Akter, Tania ; Barile, Christopher J</creator><creatorcontrib>Akter, Tania ; Barile, Christopher J</creatorcontrib><description>Bimetallic Cu materials are promising CO2 reduction electrocatalysts for the formation of valuable multicarbon products. We describe membrane-modified Ag–Cu electrocatalysts that convert CO2 to C2 products with high selectivity. While traditional Ag–Cu catalysts generate ethylene (C2H4) as the main product, we demonstrate that product selectivity can be switched to ethanol (C2H5OH) by introducing a proton-permeable fluoropolymer. By optimizing the catalyst composition, voltage, and membrane thickness and identity, we develop a catalyst that generates C2H5OH with up to 72% faradaic efficiency, making it the most selective Ag–Cu catalyst for C2H5OH reported. Lastly, we discuss a detailed chemical mechanism that explains how the hydrophobicity of the membrane overlayer enables catalysts with switchable C2 product selectivity.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta00613a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bimetals ; Carbon dioxide ; Catalysts ; Copper ; Electrocatalysts ; Ethanol ; Fluoropolymers ; Hydrophobicity ; Membranes ; Selectivity ; Silver</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-05, Vol.11 (21), p.11354-11363</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Akter, Tania</creatorcontrib><creatorcontrib>Barile, Christopher J</creatorcontrib><title>Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Bimetallic Cu materials are promising CO2 reduction electrocatalysts for the formation of valuable multicarbon products. We describe membrane-modified Ag–Cu electrocatalysts that convert CO2 to C2 products with high selectivity. While traditional Ag–Cu catalysts generate ethylene (C2H4) as the main product, we demonstrate that product selectivity can be switched to ethanol (C2H5OH) by introducing a proton-permeable fluoropolymer. By optimizing the catalyst composition, voltage, and membrane thickness and identity, we develop a catalyst that generates C2H5OH with up to 72% faradaic efficiency, making it the most selective Ag–Cu catalyst for C2H5OH reported. Lastly, we discuss a detailed chemical mechanism that explains how the hydrophobicity of the membrane overlayer enables catalysts with switchable C2 product selectivity.</description><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Copper</subject><subject>Electrocatalysts</subject><subject>Ethanol</subject><subject>Fluoropolymers</subject><subject>Hydrophobicity</subject><subject>Membranes</subject><subject>Selectivity</subject><subject>Silver</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9TstKxDAUDaLgoLPxCwKuq3k0abKU4gtGZqPr4fYmsRliOzYZdf7eouJdnAcczrmEXHB2xZm0104WYExzCUdkIZhiVVNbffyvjTkly5y3bD4zB61dkK8n_9ZNMPgKx6FMY0re0XYtqE8eZ49QIB1yyfQzlp7mGbGHLnnaCrqbRrfHQvNPOH7EcqAwONrH154GmMBBROpDiBj9gAcaxon60sMwpnNyEiBlv_zjM_Jyd_vcPlSr9f1je7OqdtzIUgl0WGtmGkBeByY6aaTltgneQe2UNogKguw06tCwwJGBstigkVwFY7Q8I5e_vfOz73ufy2Y77qdhntwII1itaqMa-Q0S92Cz</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Akter, Tania</creator><creator>Barile, Christopher J</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230530</creationdate><title>Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol</title><author>Akter, Tania ; Barile, Christopher J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-2cdc46087ac14f02b3839197feda4d568cc5af3b6c6f70f1c0a59c7c8315f8863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Copper</topic><topic>Electrocatalysts</topic><topic>Ethanol</topic><topic>Fluoropolymers</topic><topic>Hydrophobicity</topic><topic>Membranes</topic><topic>Selectivity</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akter, Tania</creatorcontrib><creatorcontrib>Barile, Christopher J</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akter, Tania</au><au>Barile, Christopher J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-05-30</date><risdate>2023</risdate><volume>11</volume><issue>21</issue><spage>11354</spage><epage>11363</epage><pages>11354-11363</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Bimetallic Cu materials are promising CO2 reduction electrocatalysts for the formation of valuable multicarbon products. We describe membrane-modified Ag–Cu electrocatalysts that convert CO2 to C2 products with high selectivity. While traditional Ag–Cu catalysts generate ethylene (C2H4) as the main product, we demonstrate that product selectivity can be switched to ethanol (C2H5OH) by introducing a proton-permeable fluoropolymer. By optimizing the catalyst composition, voltage, and membrane thickness and identity, we develop a catalyst that generates C2H5OH with up to 72% faradaic efficiency, making it the most selective Ag–Cu catalyst for C2H5OH reported. Lastly, we discuss a detailed chemical mechanism that explains how the hydrophobicity of the membrane overlayer enables catalysts with switchable C2 product selectivity.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta00613a</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-05, Vol.11 (21), p.11354-11363 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2820454857 |
source | Royal Society Of Chemistry Journals |
subjects | Bimetals Carbon dioxide Catalysts Copper Electrocatalysts Ethanol Fluoropolymers Hydrophobicity Membranes Selectivity Silver |
title | Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane-controlled%20CO2%20electrocatalysts%20with%20switchable%20C2%20product%20selectivity%20and%20high%20faradaic%20efficiency%20for%20ethanol&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Akter,%20Tania&rft.date=2023-05-30&rft.volume=11&rft.issue=21&rft.spage=11354&rft.epage=11363&rft.pages=11354-11363&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta00613a&rft_dat=%3Cproquest%3E2820454857%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820454857&rft_id=info:pmid/&rfr_iscdi=true |