Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol

Bimetallic Cu materials are promising CO2 reduction electrocatalysts for the formation of valuable multicarbon products. We describe membrane-modified Ag–Cu electrocatalysts that convert CO2 to C2 products with high selectivity. While traditional Ag–Cu catalysts generate ethylene (C2H4) as the main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-05, Vol.11 (21), p.11354-11363
Hauptverfasser: Akter, Tania, Barile, Christopher J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11363
container_issue 21
container_start_page 11354
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Akter, Tania
Barile, Christopher J
description Bimetallic Cu materials are promising CO2 reduction electrocatalysts for the formation of valuable multicarbon products. We describe membrane-modified Ag–Cu electrocatalysts that convert CO2 to C2 products with high selectivity. While traditional Ag–Cu catalysts generate ethylene (C2H4) as the main product, we demonstrate that product selectivity can be switched to ethanol (C2H5OH) by introducing a proton-permeable fluoropolymer. By optimizing the catalyst composition, voltage, and membrane thickness and identity, we develop a catalyst that generates C2H5OH with up to 72% faradaic efficiency, making it the most selective Ag–Cu catalyst for C2H5OH reported. Lastly, we discuss a detailed chemical mechanism that explains how the hydrophobicity of the membrane overlayer enables catalysts with switchable C2 product selectivity.
doi_str_mv 10.1039/d3ta00613a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2820454857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820454857</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-2cdc46087ac14f02b3839197feda4d568cc5af3b6c6f70f1c0a59c7c8315f8863</originalsourceid><addsrcrecordid>eNo9TstKxDAUDaLgoLPxCwKuq3k0abKU4gtGZqPr4fYmsRliOzYZdf7eouJdnAcczrmEXHB2xZm0104WYExzCUdkIZhiVVNbffyvjTkly5y3bD4zB61dkK8n_9ZNMPgKx6FMY0re0XYtqE8eZ49QIB1yyfQzlp7mGbGHLnnaCrqbRrfHQvNPOH7EcqAwONrH154GmMBBROpDiBj9gAcaxon60sMwpnNyEiBlv_zjM_Jyd_vcPlSr9f1je7OqdtzIUgl0WGtmGkBeByY6aaTltgneQe2UNogKguw06tCwwJGBstigkVwFY7Q8I5e_vfOz73ufy2Y77qdhntwII1itaqMa-Q0S92Cz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820454857</pqid></control><display><type>article</type><title>Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol</title><source>Royal Society Of Chemistry Journals</source><creator>Akter, Tania ; Barile, Christopher J</creator><creatorcontrib>Akter, Tania ; Barile, Christopher J</creatorcontrib><description>Bimetallic Cu materials are promising CO2 reduction electrocatalysts for the formation of valuable multicarbon products. We describe membrane-modified Ag–Cu electrocatalysts that convert CO2 to C2 products with high selectivity. While traditional Ag–Cu catalysts generate ethylene (C2H4) as the main product, we demonstrate that product selectivity can be switched to ethanol (C2H5OH) by introducing a proton-permeable fluoropolymer. By optimizing the catalyst composition, voltage, and membrane thickness and identity, we develop a catalyst that generates C2H5OH with up to 72% faradaic efficiency, making it the most selective Ag–Cu catalyst for C2H5OH reported. Lastly, we discuss a detailed chemical mechanism that explains how the hydrophobicity of the membrane overlayer enables catalysts with switchable C2 product selectivity.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta00613a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bimetals ; Carbon dioxide ; Catalysts ; Copper ; Electrocatalysts ; Ethanol ; Fluoropolymers ; Hydrophobicity ; Membranes ; Selectivity ; Silver</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-05, Vol.11 (21), p.11354-11363</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Akter, Tania</creatorcontrib><creatorcontrib>Barile, Christopher J</creatorcontrib><title>Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Bimetallic Cu materials are promising CO2 reduction electrocatalysts for the formation of valuable multicarbon products. We describe membrane-modified Ag–Cu electrocatalysts that convert CO2 to C2 products with high selectivity. While traditional Ag–Cu catalysts generate ethylene (C2H4) as the main product, we demonstrate that product selectivity can be switched to ethanol (C2H5OH) by introducing a proton-permeable fluoropolymer. By optimizing the catalyst composition, voltage, and membrane thickness and identity, we develop a catalyst that generates C2H5OH with up to 72% faradaic efficiency, making it the most selective Ag–Cu catalyst for C2H5OH reported. Lastly, we discuss a detailed chemical mechanism that explains how the hydrophobicity of the membrane overlayer enables catalysts with switchable C2 product selectivity.</description><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Copper</subject><subject>Electrocatalysts</subject><subject>Ethanol</subject><subject>Fluoropolymers</subject><subject>Hydrophobicity</subject><subject>Membranes</subject><subject>Selectivity</subject><subject>Silver</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9TstKxDAUDaLgoLPxCwKuq3k0abKU4gtGZqPr4fYmsRliOzYZdf7eouJdnAcczrmEXHB2xZm0104WYExzCUdkIZhiVVNbffyvjTkly5y3bD4zB61dkK8n_9ZNMPgKx6FMY0re0XYtqE8eZ49QIB1yyfQzlp7mGbGHLnnaCrqbRrfHQvNPOH7EcqAwONrH154GmMBBROpDiBj9gAcaxon60sMwpnNyEiBlv_zjM_Jyd_vcPlSr9f1je7OqdtzIUgl0WGtmGkBeByY6aaTltgneQe2UNogKguw06tCwwJGBstigkVwFY7Q8I5e_vfOz73ufy2Y77qdhntwII1itaqMa-Q0S92Cz</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Akter, Tania</creator><creator>Barile, Christopher J</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230530</creationdate><title>Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol</title><author>Akter, Tania ; Barile, Christopher J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-2cdc46087ac14f02b3839197feda4d568cc5af3b6c6f70f1c0a59c7c8315f8863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Copper</topic><topic>Electrocatalysts</topic><topic>Ethanol</topic><topic>Fluoropolymers</topic><topic>Hydrophobicity</topic><topic>Membranes</topic><topic>Selectivity</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akter, Tania</creatorcontrib><creatorcontrib>Barile, Christopher J</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akter, Tania</au><au>Barile, Christopher J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-05-30</date><risdate>2023</risdate><volume>11</volume><issue>21</issue><spage>11354</spage><epage>11363</epage><pages>11354-11363</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Bimetallic Cu materials are promising CO2 reduction electrocatalysts for the formation of valuable multicarbon products. We describe membrane-modified Ag–Cu electrocatalysts that convert CO2 to C2 products with high selectivity. While traditional Ag–Cu catalysts generate ethylene (C2H4) as the main product, we demonstrate that product selectivity can be switched to ethanol (C2H5OH) by introducing a proton-permeable fluoropolymer. By optimizing the catalyst composition, voltage, and membrane thickness and identity, we develop a catalyst that generates C2H5OH with up to 72% faradaic efficiency, making it the most selective Ag–Cu catalyst for C2H5OH reported. Lastly, we discuss a detailed chemical mechanism that explains how the hydrophobicity of the membrane overlayer enables catalysts with switchable C2 product selectivity.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta00613a</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-05, Vol.11 (21), p.11354-11363
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2820454857
source Royal Society Of Chemistry Journals
subjects Bimetals
Carbon dioxide
Catalysts
Copper
Electrocatalysts
Ethanol
Fluoropolymers
Hydrophobicity
Membranes
Selectivity
Silver
title Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane-controlled%20CO2%20electrocatalysts%20with%20switchable%20C2%20product%20selectivity%20and%20high%20faradaic%20efficiency%20for%20ethanol&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Akter,%20Tania&rft.date=2023-05-30&rft.volume=11&rft.issue=21&rft.spage=11354&rft.epage=11363&rft.pages=11354-11363&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta00613a&rft_dat=%3Cproquest%3E2820454857%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820454857&rft_id=info:pmid/&rfr_iscdi=true