On the stability of inhomogeneous fluids under acoustic fields

In this work, we present the stability theory for inhomogeneous fluids subjected to standing acoustic fields. Starting from the first principles, the stability criterion is established for two fluids of different acoustic impedance (product of density and speed of sound of the fluid) separated by a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-05, Vol.964, Article A23
Hauptverfasser: Rajendran, Varun Kumar, Aravind Ram, S.P., Subramani, Karthick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 964
creator Rajendran, Varun Kumar
Aravind Ram, S.P.
Subramani, Karthick
description In this work, we present the stability theory for inhomogeneous fluids subjected to standing acoustic fields. Starting from the first principles, the stability criterion is established for two fluids of different acoustic impedance (product of density and speed of sound of the fluid) separated by a plane interface. Through stability theory and numerical simulations, we show that, in the presence of interfacial tension, the relocation of high-impedance fluid from the pressure anti-node to the pressure node occurs when the acoustic force overcomes the interfacial tension force, which is in agreement with recent acoustic relocation experiments in the microchannel. Furthermore, we establish an acoustic Bond number that characterizes stable ($Bo_{a}1$) regimes. Remarkably, it is found that the critical acoustic energy density required for relocation can be significantly reduced by increasing the height of the channel which could help in designing acoustofluidic devices that handle immiscible fluids.
doi_str_mv 10.1017/jfm.2023.371
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2820198095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_371</cupid><sourcerecordid>2820198095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-700d914beed5084370f66eaafa2ffc755c95a990741c77434ad63a453c351cd73</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKs7f0DArTPevCbNRpDiCwrd6Dpk8mhT5lGTmUX_vVNacOPqwOW758CH0D2BkgCRT7vQlhQoK5kkF2hGeKUKWXFxiWYAlBaEULhGNznvAAgDJWfoed3hYetxHkwdmzgccB9w7LZ922985_sx49CM0WU8ds4nbOx0GqLFIfrG5Vt0FUyT_d055-j77fVr-VGs1u-fy5dVYalQQyEBnCK89t4JWHAmIVSVNyYYGoKVQlgljFIgObFScsaNq5jhglkmiHWSzdHDqXef-p_R50Hv-jF106SmCwpELUCJiXo8UTb1OScf9D7F1qSDJqCPhvRkSB8N6cnQhJdn3LR1im7j_1r_ffgFXg9noQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820198095</pqid></control><display><type>article</type><title>On the stability of inhomogeneous fluids under acoustic fields</title><source>Cambridge Journals</source><creator>Rajendran, Varun Kumar ; Aravind Ram, S.P. ; Subramani, Karthick</creator><creatorcontrib>Rajendran, Varun Kumar ; Aravind Ram, S.P. ; Subramani, Karthick</creatorcontrib><description>In this work, we present the stability theory for inhomogeneous fluids subjected to standing acoustic fields. Starting from the first principles, the stability criterion is established for two fluids of different acoustic impedance (product of density and speed of sound of the fluid) separated by a plane interface. Through stability theory and numerical simulations, we show that, in the presence of interfacial tension, the relocation of high-impedance fluid from the pressure anti-node to the pressure node occurs when the acoustic force overcomes the interfacial tension force, which is in agreement with recent acoustic relocation experiments in the microchannel. Furthermore, we establish an acoustic Bond number that characterizes stable ($Bo_{a}&lt;1$) and relocation ($Bo_{a}&gt;1$) regimes. Remarkably, it is found that the critical acoustic energy density required for relocation can be significantly reduced by increasing the height of the channel which could help in designing acoustofluidic devices that handle immiscible fluids.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.371</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Acoustic impedance ; Acoustics ; Bond number ; Fields ; First principles ; Fluid mechanics ; Fluids ; High impedance ; Impedance ; Interface stability ; JFM Papers ; Microchannels ; Relocation ; Simulation ; Sound fields ; Stability ; Stability criteria ; Surface tension ; Velocity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2023-05, Vol.964, Article A23</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-700d914beed5084370f66eaafa2ffc755c95a990741c77434ad63a453c351cd73</cites><orcidid>0000-0002-7751-7759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023003713/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Rajendran, Varun Kumar</creatorcontrib><creatorcontrib>Aravind Ram, S.P.</creatorcontrib><creatorcontrib>Subramani, Karthick</creatorcontrib><title>On the stability of inhomogeneous fluids under acoustic fields</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In this work, we present the stability theory for inhomogeneous fluids subjected to standing acoustic fields. Starting from the first principles, the stability criterion is established for two fluids of different acoustic impedance (product of density and speed of sound of the fluid) separated by a plane interface. Through stability theory and numerical simulations, we show that, in the presence of interfacial tension, the relocation of high-impedance fluid from the pressure anti-node to the pressure node occurs when the acoustic force overcomes the interfacial tension force, which is in agreement with recent acoustic relocation experiments in the microchannel. Furthermore, we establish an acoustic Bond number that characterizes stable ($Bo_{a}&lt;1$) and relocation ($Bo_{a}&gt;1$) regimes. Remarkably, it is found that the critical acoustic energy density required for relocation can be significantly reduced by increasing the height of the channel which could help in designing acoustofluidic devices that handle immiscible fluids.</description><subject>Acoustic impedance</subject><subject>Acoustics</subject><subject>Bond number</subject><subject>Fields</subject><subject>First principles</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>High impedance</subject><subject>Impedance</subject><subject>Interface stability</subject><subject>JFM Papers</subject><subject>Microchannels</subject><subject>Relocation</subject><subject>Simulation</subject><subject>Sound fields</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Surface tension</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtLAzEUhYMoWKs7f0DArTPevCbNRpDiCwrd6Dpk8mhT5lGTmUX_vVNacOPqwOW758CH0D2BkgCRT7vQlhQoK5kkF2hGeKUKWXFxiWYAlBaEULhGNznvAAgDJWfoed3hYetxHkwdmzgccB9w7LZ922985_sx49CM0WU8ds4nbOx0GqLFIfrG5Vt0FUyT_d055-j77fVr-VGs1u-fy5dVYalQQyEBnCK89t4JWHAmIVSVNyYYGoKVQlgljFIgObFScsaNq5jhglkmiHWSzdHDqXef-p_R50Hv-jF106SmCwpELUCJiXo8UTb1OScf9D7F1qSDJqCPhvRkSB8N6cnQhJdn3LR1im7j_1r_ffgFXg9noQ</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Rajendran, Varun Kumar</creator><creator>Aravind Ram, S.P.</creator><creator>Subramani, Karthick</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7751-7759</orcidid></search><sort><creationdate>20230530</creationdate><title>On the stability of inhomogeneous fluids under acoustic fields</title><author>Rajendran, Varun Kumar ; Aravind Ram, S.P. ; Subramani, Karthick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-700d914beed5084370f66eaafa2ffc755c95a990741c77434ad63a453c351cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic impedance</topic><topic>Acoustics</topic><topic>Bond number</topic><topic>Fields</topic><topic>First principles</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>High impedance</topic><topic>Impedance</topic><topic>Interface stability</topic><topic>JFM Papers</topic><topic>Microchannels</topic><topic>Relocation</topic><topic>Simulation</topic><topic>Sound fields</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Surface tension</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajendran, Varun Kumar</creatorcontrib><creatorcontrib>Aravind Ram, S.P.</creatorcontrib><creatorcontrib>Subramani, Karthick</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajendran, Varun Kumar</au><au>Aravind Ram, S.P.</au><au>Subramani, Karthick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stability of inhomogeneous fluids under acoustic fields</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-05-30</date><risdate>2023</risdate><volume>964</volume><artnum>A23</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>In this work, we present the stability theory for inhomogeneous fluids subjected to standing acoustic fields. Starting from the first principles, the stability criterion is established for two fluids of different acoustic impedance (product of density and speed of sound of the fluid) separated by a plane interface. Through stability theory and numerical simulations, we show that, in the presence of interfacial tension, the relocation of high-impedance fluid from the pressure anti-node to the pressure node occurs when the acoustic force overcomes the interfacial tension force, which is in agreement with recent acoustic relocation experiments in the microchannel. Furthermore, we establish an acoustic Bond number that characterizes stable ($Bo_{a}&lt;1$) and relocation ($Bo_{a}&gt;1$) regimes. Remarkably, it is found that the critical acoustic energy density required for relocation can be significantly reduced by increasing the height of the channel which could help in designing acoustofluidic devices that handle immiscible fluids.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.371</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7751-7759</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2023-05, Vol.964, Article A23
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2820198095
source Cambridge Journals
subjects Acoustic impedance
Acoustics
Bond number
Fields
First principles
Fluid mechanics
Fluids
High impedance
Impedance
Interface stability
JFM Papers
Microchannels
Relocation
Simulation
Sound fields
Stability
Stability criteria
Surface tension
Velocity
Viscosity
title On the stability of inhomogeneous fluids under acoustic fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stability%20of%20inhomogeneous%20fluids%20under%20acoustic%20fields&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Rajendran,%20Varun%20Kumar&rft.date=2023-05-30&rft.volume=964&rft.artnum=A23&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.371&rft_dat=%3Cproquest_cross%3E2820198095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820198095&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_371&rfr_iscdi=true