On Reconfiguration Graphs of Independent Sets Under Token Sliding
An independent set of a graph G is a vertex subset I such that there is no edge joining any two vertices in I . Imagine that a token is placed on each vertex of an independent set of G . The TS - ( TS k -) reconfiguration graph of G takes all non-empty independent sets (of size k ) as its nodes, whe...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2023-06, Vol.39 (3), Article 59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Graphs and combinatorics |
container_volume | 39 |
creator | Avis, David Hoang, Duc A. |
description | An independent set of a graph
G
is a vertex subset
I
such that there is no edge joining any two vertices in
I
. Imagine that a token is placed on each vertex of an independent set of
G
. The
TS
- (
TS
k
-) reconfiguration graph of
G
takes all non-empty independent sets (of size
k
) as its nodes, where
k
is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph
G
: (1) Whether the
TS
k
-reconfiguration graph of
G
belongs to some graph class
G
(including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If
G
satisfies some property
P
(including
s
-partitedness, planarity, Eulerianity, girth, and the clique’s size), whether the corresponding
TS
- (
TS
k
-) reconfiguration graph of
G
also satisfies
P
, and vice versa. Additionally, we give a decomposition result for splitting a
TS
k
-reconfiguration graph into smaller pieces. |
doi_str_mv | 10.1007/s00373-023-02644-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2820105725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820105725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1f21ae25ddd6c1283f02266eb533a6bac43f7ab8f09cbe65d953f0c740acbb333</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA8-pMPna7x1K0FoSCbc8hm03q1ppdky3Ff2_qCt48zMfheWfgIeQW4R4BiocIwAueATtVLkR2PCMjFFxmskRxTkZQImaAWF6Sqxh3ACBRwIhMl56-WtN612wPQfdN6-k86O4t0tbRha9tZ1PzPV3ZPtJN2gNdt-_W09W-qRu_vSYXTu-jvfmdY7J5elzPnrOX5Xwxm75khmPZZ-gYastkXde5QTbhDhjLc1tJznVeaSO4K3Q1cVCayuayLmVCTCFAm6rinI_J3XC3C-3nwcZe7dpD8OmlYhMGCLJgMlFsoExoYwzWqS40Hzp8KQR1UqUGVSqpUj-q1DGF-BCKCfZbG_5O_5P6Bn0SbBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820105725</pqid></control><display><type>article</type><title>On Reconfiguration Graphs of Independent Sets Under Token Sliding</title><source>SpringerLink Journals</source><creator>Avis, David ; Hoang, Duc A.</creator><creatorcontrib>Avis, David ; Hoang, Duc A.</creatorcontrib><description>An independent set of a graph
G
is a vertex subset
I
such that there is no edge joining any two vertices in
I
. Imagine that a token is placed on each vertex of an independent set of
G
. The
TS
- (
TS
k
-) reconfiguration graph of
G
takes all non-empty independent sets (of size
k
) as its nodes, where
k
is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph
G
: (1) Whether the
TS
k
-reconfiguration graph of
G
belongs to some graph class
G
(including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If
G
satisfies some property
P
(including
s
-partitedness, planarity, Eulerianity, girth, and the clique’s size), whether the corresponding
TS
- (
TS
k
-) reconfiguration graph of
G
also satisfies
P
, and vice versa. Additionally, we give a decomposition result for splitting a
TS
k
-reconfiguration graph into smaller pieces.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-023-02644-w</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Apexes ; Combinatorics ; Engineering Design ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics ; Nodes ; Original Paper ; Reconfiguration ; Sliding</subject><ispartof>Graphs and combinatorics, 2023-06, Vol.39 (3), Article 59</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1f21ae25ddd6c1283f02266eb533a6bac43f7ab8f09cbe65d953f0c740acbb333</citedby><cites>FETCH-LOGICAL-c319t-1f21ae25ddd6c1283f02266eb533a6bac43f7ab8f09cbe65d953f0c740acbb333</cites><orcidid>0000-0002-8635-8462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-023-02644-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-023-02644-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Avis, David</creatorcontrib><creatorcontrib>Hoang, Duc A.</creatorcontrib><title>On Reconfiguration Graphs of Independent Sets Under Token Sliding</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>An independent set of a graph
G
is a vertex subset
I
such that there is no edge joining any two vertices in
I
. Imagine that a token is placed on each vertex of an independent set of
G
. The
TS
- (
TS
k
-) reconfiguration graph of
G
takes all non-empty independent sets (of size
k
) as its nodes, where
k
is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph
G
: (1) Whether the
TS
k
-reconfiguration graph of
G
belongs to some graph class
G
(including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If
G
satisfies some property
P
(including
s
-partitedness, planarity, Eulerianity, girth, and the clique’s size), whether the corresponding
TS
- (
TS
k
-) reconfiguration graph of
G
also satisfies
P
, and vice versa. Additionally, we give a decomposition result for splitting a
TS
k
-reconfiguration graph into smaller pieces.</description><subject>Apexes</subject><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nodes</subject><subject>Original Paper</subject><subject>Reconfiguration</subject><subject>Sliding</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA8-pMPna7x1K0FoSCbc8hm03q1ppdky3Ff2_qCt48zMfheWfgIeQW4R4BiocIwAueATtVLkR2PCMjFFxmskRxTkZQImaAWF6Sqxh3ACBRwIhMl56-WtN612wPQfdN6-k86O4t0tbRha9tZ1PzPV3ZPtJN2gNdt-_W09W-qRu_vSYXTu-jvfmdY7J5elzPnrOX5Xwxm75khmPZZ-gYastkXde5QTbhDhjLc1tJznVeaSO4K3Q1cVCayuayLmVCTCFAm6rinI_J3XC3C-3nwcZe7dpD8OmlYhMGCLJgMlFsoExoYwzWqS40Hzp8KQR1UqUGVSqpUj-q1DGF-BCKCfZbG_5O_5P6Bn0SbBg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Avis, David</creator><creator>Hoang, Duc A.</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8635-8462</orcidid></search><sort><creationdate>20230601</creationdate><title>On Reconfiguration Graphs of Independent Sets Under Token Sliding</title><author>Avis, David ; Hoang, Duc A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1f21ae25ddd6c1283f02266eb533a6bac43f7ab8f09cbe65d953f0c740acbb333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nodes</topic><topic>Original Paper</topic><topic>Reconfiguration</topic><topic>Sliding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avis, David</creatorcontrib><creatorcontrib>Hoang, Duc A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avis, David</au><au>Hoang, Duc A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Reconfiguration Graphs of Independent Sets Under Token Sliding</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>39</volume><issue>3</issue><artnum>59</artnum><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>An independent set of a graph
G
is a vertex subset
I
such that there is no edge joining any two vertices in
I
. Imagine that a token is placed on each vertex of an independent set of
G
. The
TS
- (
TS
k
-) reconfiguration graph of
G
takes all non-empty independent sets (of size
k
) as its nodes, where
k
is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph
G
: (1) Whether the
TS
k
-reconfiguration graph of
G
belongs to some graph class
G
(including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If
G
satisfies some property
P
(including
s
-partitedness, planarity, Eulerianity, girth, and the clique’s size), whether the corresponding
TS
- (
TS
k
-) reconfiguration graph of
G
also satisfies
P
, and vice versa. Additionally, we give a decomposition result for splitting a
TS
k
-reconfiguration graph into smaller pieces.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-023-02644-w</doi><orcidid>https://orcid.org/0000-0002-8635-8462</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0911-0119 |
ispartof | Graphs and combinatorics, 2023-06, Vol.39 (3), Article 59 |
issn | 0911-0119 1435-5914 |
language | eng |
recordid | cdi_proquest_journals_2820105725 |
source | SpringerLink Journals |
subjects | Apexes Combinatorics Engineering Design Graph theory Graphs Mathematics Mathematics and Statistics Nodes Original Paper Reconfiguration Sliding |
title | On Reconfiguration Graphs of Independent Sets Under Token Sliding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Reconfiguration%20Graphs%20of%20Independent%20Sets%20Under%20Token%20Sliding&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Avis,%20David&rft.date=2023-06-01&rft.volume=39&rft.issue=3&rft.artnum=59&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-023-02644-w&rft_dat=%3Cproquest_cross%3E2820105725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820105725&rft_id=info:pmid/&rfr_iscdi=true |