On Reconfiguration Graphs of Independent Sets Under Token Sliding

An independent set of a graph G is a vertex subset I such that there is no edge joining any two vertices in I . Imagine that a token is placed on each vertex of an independent set of G . The TS - ( TS k -) reconfiguration graph of G takes all non-empty independent sets (of size k ) as its nodes, whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2023-06, Vol.39 (3), Article 59
Hauptverfasser: Avis, David, Hoang, Duc A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Graphs and combinatorics
container_volume 39
creator Avis, David
Hoang, Duc A.
description An independent set of a graph G is a vertex subset I such that there is no edge joining any two vertices in I . Imagine that a token is placed on each vertex of an independent set of G . The TS - ( TS k -) reconfiguration graph of G takes all non-empty independent sets (of size k ) as its nodes, where k is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph G : (1) Whether the TS k -reconfiguration graph of G belongs to some graph class G (including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If G satisfies some property P (including s -partitedness, planarity, Eulerianity, girth, and the clique’s size), whether the corresponding TS - ( TS k -) reconfiguration graph of G also satisfies P , and vice versa. Additionally, we give a decomposition result for splitting a TS k -reconfiguration graph into smaller pieces.
doi_str_mv 10.1007/s00373-023-02644-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2820105725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820105725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1f21ae25ddd6c1283f02266eb533a6bac43f7ab8f09cbe65d953f0c740acbb333</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA8-pMPna7x1K0FoSCbc8hm03q1ppdky3Ff2_qCt48zMfheWfgIeQW4R4BiocIwAueATtVLkR2PCMjFFxmskRxTkZQImaAWF6Sqxh3ACBRwIhMl56-WtN612wPQfdN6-k86O4t0tbRha9tZ1PzPV3ZPtJN2gNdt-_W09W-qRu_vSYXTu-jvfmdY7J5elzPnrOX5Xwxm75khmPZZ-gYastkXde5QTbhDhjLc1tJznVeaSO4K3Q1cVCayuayLmVCTCFAm6rinI_J3XC3C-3nwcZe7dpD8OmlYhMGCLJgMlFsoExoYwzWqS40Hzp8KQR1UqUGVSqpUj-q1DGF-BCKCfZbG_5O_5P6Bn0SbBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820105725</pqid></control><display><type>article</type><title>On Reconfiguration Graphs of Independent Sets Under Token Sliding</title><source>SpringerLink Journals</source><creator>Avis, David ; Hoang, Duc A.</creator><creatorcontrib>Avis, David ; Hoang, Duc A.</creatorcontrib><description>An independent set of a graph G is a vertex subset I such that there is no edge joining any two vertices in I . Imagine that a token is placed on each vertex of an independent set of G . The TS - ( TS k -) reconfiguration graph of G takes all non-empty independent sets (of size k ) as its nodes, where k is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph G : (1) Whether the TS k -reconfiguration graph of G belongs to some graph class G (including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If G satisfies some property P (including s -partitedness, planarity, Eulerianity, girth, and the clique’s size), whether the corresponding TS - ( TS k -) reconfiguration graph of G also satisfies P , and vice versa. Additionally, we give a decomposition result for splitting a TS k -reconfiguration graph into smaller pieces.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-023-02644-w</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Apexes ; Combinatorics ; Engineering Design ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics ; Nodes ; Original Paper ; Reconfiguration ; Sliding</subject><ispartof>Graphs and combinatorics, 2023-06, Vol.39 (3), Article 59</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1f21ae25ddd6c1283f02266eb533a6bac43f7ab8f09cbe65d953f0c740acbb333</citedby><cites>FETCH-LOGICAL-c319t-1f21ae25ddd6c1283f02266eb533a6bac43f7ab8f09cbe65d953f0c740acbb333</cites><orcidid>0000-0002-8635-8462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-023-02644-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-023-02644-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Avis, David</creatorcontrib><creatorcontrib>Hoang, Duc A.</creatorcontrib><title>On Reconfiguration Graphs of Independent Sets Under Token Sliding</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>An independent set of a graph G is a vertex subset I such that there is no edge joining any two vertices in I . Imagine that a token is placed on each vertex of an independent set of G . The TS - ( TS k -) reconfiguration graph of G takes all non-empty independent sets (of size k ) as its nodes, where k is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph G : (1) Whether the TS k -reconfiguration graph of G belongs to some graph class G (including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If G satisfies some property P (including s -partitedness, planarity, Eulerianity, girth, and the clique’s size), whether the corresponding TS - ( TS k -) reconfiguration graph of G also satisfies P , and vice versa. Additionally, we give a decomposition result for splitting a TS k -reconfiguration graph into smaller pieces.</description><subject>Apexes</subject><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nodes</subject><subject>Original Paper</subject><subject>Reconfiguration</subject><subject>Sliding</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA8-pMPna7x1K0FoSCbc8hm03q1ppdky3Ff2_qCt48zMfheWfgIeQW4R4BiocIwAueATtVLkR2PCMjFFxmskRxTkZQImaAWF6Sqxh3ACBRwIhMl56-WtN612wPQfdN6-k86O4t0tbRha9tZ1PzPV3ZPtJN2gNdt-_W09W-qRu_vSYXTu-jvfmdY7J5elzPnrOX5Xwxm75khmPZZ-gYastkXde5QTbhDhjLc1tJznVeaSO4K3Q1cVCayuayLmVCTCFAm6rinI_J3XC3C-3nwcZe7dpD8OmlYhMGCLJgMlFsoExoYwzWqS40Hzp8KQR1UqUGVSqpUj-q1DGF-BCKCfZbG_5O_5P6Bn0SbBg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Avis, David</creator><creator>Hoang, Duc A.</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8635-8462</orcidid></search><sort><creationdate>20230601</creationdate><title>On Reconfiguration Graphs of Independent Sets Under Token Sliding</title><author>Avis, David ; Hoang, Duc A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1f21ae25ddd6c1283f02266eb533a6bac43f7ab8f09cbe65d953f0c740acbb333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nodes</topic><topic>Original Paper</topic><topic>Reconfiguration</topic><topic>Sliding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avis, David</creatorcontrib><creatorcontrib>Hoang, Duc A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avis, David</au><au>Hoang, Duc A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Reconfiguration Graphs of Independent Sets Under Token Sliding</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>39</volume><issue>3</issue><artnum>59</artnum><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>An independent set of a graph G is a vertex subset I such that there is no edge joining any two vertices in I . Imagine that a token is placed on each vertex of an independent set of G . The TS - ( TS k -) reconfiguration graph of G takes all non-empty independent sets (of size k ) as its nodes, where k is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph G : (1) Whether the TS k -reconfiguration graph of G belongs to some graph class G (including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If G satisfies some property P (including s -partitedness, planarity, Eulerianity, girth, and the clique’s size), whether the corresponding TS - ( TS k -) reconfiguration graph of G also satisfies P , and vice versa. Additionally, we give a decomposition result for splitting a TS k -reconfiguration graph into smaller pieces.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-023-02644-w</doi><orcidid>https://orcid.org/0000-0002-8635-8462</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0911-0119
ispartof Graphs and combinatorics, 2023-06, Vol.39 (3), Article 59
issn 0911-0119
1435-5914
language eng
recordid cdi_proquest_journals_2820105725
source SpringerLink Journals
subjects Apexes
Combinatorics
Engineering Design
Graph theory
Graphs
Mathematics
Mathematics and Statistics
Nodes
Original Paper
Reconfiguration
Sliding
title On Reconfiguration Graphs of Independent Sets Under Token Sliding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Reconfiguration%20Graphs%20of%20Independent%20Sets%20Under%20Token%20Sliding&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Avis,%20David&rft.date=2023-06-01&rft.volume=39&rft.issue=3&rft.artnum=59&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-023-02644-w&rft_dat=%3Cproquest_cross%3E2820105725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820105725&rft_id=info:pmid/&rfr_iscdi=true