Trans-Dimensional Generative Modeling via Jump Diffusion Models

We propose a new class of generative models that naturally handle data of varying dimensionality by jointly modeling the state and dimension of each datapoint. The generative process is formulated as a jump diffusion process that makes jumps between different dimensional spaces. We first define a di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Campbell, Andrew, Harvey, William, Weilbach, Christian, De Bortoli, Valentin, Rainforth, Tom, Doucet, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Campbell, Andrew
Harvey, William
Weilbach, Christian
De Bortoli, Valentin
Rainforth, Tom
Doucet, Arnaud
description We propose a new class of generative models that naturally handle data of varying dimensionality by jointly modeling the state and dimension of each datapoint. The generative process is formulated as a jump diffusion process that makes jumps between different dimensional spaces. We first define a dimension destroying forward noising process, before deriving the dimension creating time-reversed generative process along with a novel evidence lower bound training objective for learning to approximate it. Simulating our learned approximation to the time-reversed generative process then provides an effective way of sampling data of varying dimensionality by jointly generating state values and dimensions. We demonstrate our approach on molecular and video datasets of varying dimensionality, reporting better compatibility with test-time diffusion guidance imputation tasks and improved interpolation capabilities versus fixed dimensional models that generate state values and dimensions separately.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2819553889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819553889</sourcerecordid><originalsourceid>FETCH-proquest_journals_28195538893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDylKzCvWdcnMTc0rzszPS8xRcE_NSy1KLMksS1XwzU9JzcnMS1coy0xU8CrNLVBwyUxLKwUphMgV8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NIioLHF8UYWhpZAOy0sLI2JUwUA-R44wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819553889</pqid></control><display><type>article</type><title>Trans-Dimensional Generative Modeling via Jump Diffusion Models</title><source>Free E- Journals</source><creator>Campbell, Andrew ; Harvey, William ; Weilbach, Christian ; De Bortoli, Valentin ; Rainforth, Tom ; Doucet, Arnaud</creator><creatorcontrib>Campbell, Andrew ; Harvey, William ; Weilbach, Christian ; De Bortoli, Valentin ; Rainforth, Tom ; Doucet, Arnaud</creatorcontrib><description>We propose a new class of generative models that naturally handle data of varying dimensionality by jointly modeling the state and dimension of each datapoint. The generative process is formulated as a jump diffusion process that makes jumps between different dimensional spaces. We first define a dimension destroying forward noising process, before deriving the dimension creating time-reversed generative process along with a novel evidence lower bound training objective for learning to approximate it. Simulating our learned approximation to the time-reversed generative process then provides an effective way of sampling data of varying dimensionality by jointly generating state values and dimensions. We demonstrate our approach on molecular and video datasets of varying dimensionality, reporting better compatibility with test-time diffusion guidance imputation tasks and improved interpolation capabilities versus fixed dimensional models that generate state values and dimensions separately.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Interpolation ; Lower bounds ; Modelling ; Testing time</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Campbell, Andrew</creatorcontrib><creatorcontrib>Harvey, William</creatorcontrib><creatorcontrib>Weilbach, Christian</creatorcontrib><creatorcontrib>De Bortoli, Valentin</creatorcontrib><creatorcontrib>Rainforth, Tom</creatorcontrib><creatorcontrib>Doucet, Arnaud</creatorcontrib><title>Trans-Dimensional Generative Modeling via Jump Diffusion Models</title><title>arXiv.org</title><description>We propose a new class of generative models that naturally handle data of varying dimensionality by jointly modeling the state and dimension of each datapoint. The generative process is formulated as a jump diffusion process that makes jumps between different dimensional spaces. We first define a dimension destroying forward noising process, before deriving the dimension creating time-reversed generative process along with a novel evidence lower bound training objective for learning to approximate it. Simulating our learned approximation to the time-reversed generative process then provides an effective way of sampling data of varying dimensionality by jointly generating state values and dimensions. We demonstrate our approach on molecular and video datasets of varying dimensionality, reporting better compatibility with test-time diffusion guidance imputation tasks and improved interpolation capabilities versus fixed dimensional models that generate state values and dimensions separately.</description><subject>Interpolation</subject><subject>Lower bounds</subject><subject>Modelling</subject><subject>Testing time</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDylKzCvWdcnMTc0rzszPS8xRcE_NSy1KLMksS1XwzU9JzcnMS1coy0xU8CrNLVBwyUxLKwUphMgV8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NIioLHF8UYWhpZAOy0sLI2JUwUA-R44wA</recordid><startdate>20231030</startdate><enddate>20231030</enddate><creator>Campbell, Andrew</creator><creator>Harvey, William</creator><creator>Weilbach, Christian</creator><creator>De Bortoli, Valentin</creator><creator>Rainforth, Tom</creator><creator>Doucet, Arnaud</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231030</creationdate><title>Trans-Dimensional Generative Modeling via Jump Diffusion Models</title><author>Campbell, Andrew ; Harvey, William ; Weilbach, Christian ; De Bortoli, Valentin ; Rainforth, Tom ; Doucet, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28195538893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Interpolation</topic><topic>Lower bounds</topic><topic>Modelling</topic><topic>Testing time</topic><toplevel>online_resources</toplevel><creatorcontrib>Campbell, Andrew</creatorcontrib><creatorcontrib>Harvey, William</creatorcontrib><creatorcontrib>Weilbach, Christian</creatorcontrib><creatorcontrib>De Bortoli, Valentin</creatorcontrib><creatorcontrib>Rainforth, Tom</creatorcontrib><creatorcontrib>Doucet, Arnaud</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, Andrew</au><au>Harvey, William</au><au>Weilbach, Christian</au><au>De Bortoli, Valentin</au><au>Rainforth, Tom</au><au>Doucet, Arnaud</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Trans-Dimensional Generative Modeling via Jump Diffusion Models</atitle><jtitle>arXiv.org</jtitle><date>2023-10-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose a new class of generative models that naturally handle data of varying dimensionality by jointly modeling the state and dimension of each datapoint. The generative process is formulated as a jump diffusion process that makes jumps between different dimensional spaces. We first define a dimension destroying forward noising process, before deriving the dimension creating time-reversed generative process along with a novel evidence lower bound training objective for learning to approximate it. Simulating our learned approximation to the time-reversed generative process then provides an effective way of sampling data of varying dimensionality by jointly generating state values and dimensions. We demonstrate our approach on molecular and video datasets of varying dimensionality, reporting better compatibility with test-time diffusion guidance imputation tasks and improved interpolation capabilities versus fixed dimensional models that generate state values and dimensions separately.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2819553889
source Free E- Journals
subjects Interpolation
Lower bounds
Modelling
Testing time
title Trans-Dimensional Generative Modeling via Jump Diffusion Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Trans-Dimensional%20Generative%20Modeling%20via%20Jump%20Diffusion%20Models&rft.jtitle=arXiv.org&rft.au=Campbell,%20Andrew&rft.date=2023-10-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2819553889%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819553889&rft_id=info:pmid/&rfr_iscdi=true