Trans-Dimensional Generative Modeling via Jump Diffusion Models
We propose a new class of generative models that naturally handle data of varying dimensionality by jointly modeling the state and dimension of each datapoint. The generative process is formulated as a jump diffusion process that makes jumps between different dimensional spaces. We first define a di...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Campbell, Andrew Harvey, William Weilbach, Christian De Bortoli, Valentin Rainforth, Tom Doucet, Arnaud |
description | We propose a new class of generative models that naturally handle data of varying dimensionality by jointly modeling the state and dimension of each datapoint. The generative process is formulated as a jump diffusion process that makes jumps between different dimensional spaces. We first define a dimension destroying forward noising process, before deriving the dimension creating time-reversed generative process along with a novel evidence lower bound training objective for learning to approximate it. Simulating our learned approximation to the time-reversed generative process then provides an effective way of sampling data of varying dimensionality by jointly generating state values and dimensions. We demonstrate our approach on molecular and video datasets of varying dimensionality, reporting better compatibility with test-time diffusion guidance imputation tasks and improved interpolation capabilities versus fixed dimensional models that generate state values and dimensions separately. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2819553889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819553889</sourcerecordid><originalsourceid>FETCH-proquest_journals_28195538893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDylKzCvWdcnMTc0rzszPS8xRcE_NSy1KLMksS1XwzU9JzcnMS1coy0xU8CrNLVBwyUxLKwUphMgV8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NIioLHF8UYWhpZAOy0sLI2JUwUA-R44wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819553889</pqid></control><display><type>article</type><title>Trans-Dimensional Generative Modeling via Jump Diffusion Models</title><source>Free E- Journals</source><creator>Campbell, Andrew ; Harvey, William ; Weilbach, Christian ; De Bortoli, Valentin ; Rainforth, Tom ; Doucet, Arnaud</creator><creatorcontrib>Campbell, Andrew ; Harvey, William ; Weilbach, Christian ; De Bortoli, Valentin ; Rainforth, Tom ; Doucet, Arnaud</creatorcontrib><description>We propose a new class of generative models that naturally handle data of varying dimensionality by jointly modeling the state and dimension of each datapoint. The generative process is formulated as a jump diffusion process that makes jumps between different dimensional spaces. We first define a dimension destroying forward noising process, before deriving the dimension creating time-reversed generative process along with a novel evidence lower bound training objective for learning to approximate it. Simulating our learned approximation to the time-reversed generative process then provides an effective way of sampling data of varying dimensionality by jointly generating state values and dimensions. We demonstrate our approach on molecular and video datasets of varying dimensionality, reporting better compatibility with test-time diffusion guidance imputation tasks and improved interpolation capabilities versus fixed dimensional models that generate state values and dimensions separately.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Interpolation ; Lower bounds ; Modelling ; Testing time</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Campbell, Andrew</creatorcontrib><creatorcontrib>Harvey, William</creatorcontrib><creatorcontrib>Weilbach, Christian</creatorcontrib><creatorcontrib>De Bortoli, Valentin</creatorcontrib><creatorcontrib>Rainforth, Tom</creatorcontrib><creatorcontrib>Doucet, Arnaud</creatorcontrib><title>Trans-Dimensional Generative Modeling via Jump Diffusion Models</title><title>arXiv.org</title><description>We propose a new class of generative models that naturally handle data of varying dimensionality by jointly modeling the state and dimension of each datapoint. The generative process is formulated as a jump diffusion process that makes jumps between different dimensional spaces. We first define a dimension destroying forward noising process, before deriving the dimension creating time-reversed generative process along with a novel evidence lower bound training objective for learning to approximate it. Simulating our learned approximation to the time-reversed generative process then provides an effective way of sampling data of varying dimensionality by jointly generating state values and dimensions. We demonstrate our approach on molecular and video datasets of varying dimensionality, reporting better compatibility with test-time diffusion guidance imputation tasks and improved interpolation capabilities versus fixed dimensional models that generate state values and dimensions separately.</description><subject>Interpolation</subject><subject>Lower bounds</subject><subject>Modelling</subject><subject>Testing time</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDylKzCvWdcnMTc0rzszPS8xRcE_NSy1KLMksS1XwzU9JzcnMS1coy0xU8CrNLVBwyUxLKwUphMgV8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NIioLHF8UYWhpZAOy0sLI2JUwUA-R44wA</recordid><startdate>20231030</startdate><enddate>20231030</enddate><creator>Campbell, Andrew</creator><creator>Harvey, William</creator><creator>Weilbach, Christian</creator><creator>De Bortoli, Valentin</creator><creator>Rainforth, Tom</creator><creator>Doucet, Arnaud</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231030</creationdate><title>Trans-Dimensional Generative Modeling via Jump Diffusion Models</title><author>Campbell, Andrew ; Harvey, William ; Weilbach, Christian ; De Bortoli, Valentin ; Rainforth, Tom ; Doucet, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28195538893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Interpolation</topic><topic>Lower bounds</topic><topic>Modelling</topic><topic>Testing time</topic><toplevel>online_resources</toplevel><creatorcontrib>Campbell, Andrew</creatorcontrib><creatorcontrib>Harvey, William</creatorcontrib><creatorcontrib>Weilbach, Christian</creatorcontrib><creatorcontrib>De Bortoli, Valentin</creatorcontrib><creatorcontrib>Rainforth, Tom</creatorcontrib><creatorcontrib>Doucet, Arnaud</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, Andrew</au><au>Harvey, William</au><au>Weilbach, Christian</au><au>De Bortoli, Valentin</au><au>Rainforth, Tom</au><au>Doucet, Arnaud</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Trans-Dimensional Generative Modeling via Jump Diffusion Models</atitle><jtitle>arXiv.org</jtitle><date>2023-10-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose a new class of generative models that naturally handle data of varying dimensionality by jointly modeling the state and dimension of each datapoint. The generative process is formulated as a jump diffusion process that makes jumps between different dimensional spaces. We first define a dimension destroying forward noising process, before deriving the dimension creating time-reversed generative process along with a novel evidence lower bound training objective for learning to approximate it. Simulating our learned approximation to the time-reversed generative process then provides an effective way of sampling data of varying dimensionality by jointly generating state values and dimensions. We demonstrate our approach on molecular and video datasets of varying dimensionality, reporting better compatibility with test-time diffusion guidance imputation tasks and improved interpolation capabilities versus fixed dimensional models that generate state values and dimensions separately.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2819553889 |
source | Free E- Journals |
subjects | Interpolation Lower bounds Modelling Testing time |
title | Trans-Dimensional Generative Modeling via Jump Diffusion Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Trans-Dimensional%20Generative%20Modeling%20via%20Jump%20Diffusion%20Models&rft.jtitle=arXiv.org&rft.au=Campbell,%20Andrew&rft.date=2023-10-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2819553889%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819553889&rft_id=info:pmid/&rfr_iscdi=true |