Effects of high-entropy carbonate precursors on the electrochemical properties of NaCl-based high-entropy ceramics as anode materials

In this paper, powders of (Mg 0.2 Co 0.2 Ni 0.2 Zn 0.2 Cu 0.2 )O high-entropy ceramic oxides (HEO S ) were prepared by a hydrothermal method. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM–EDS) and electrochemical technology were used to study the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2023-05, Vol.34 (15), p.1227, Article 1227
Hauptverfasser: Yv, Lina, Wang, Jing, Wang, Xiaohua, Shi, Zhongxiang, Shi, Jun, Tong, Jingge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 1227
container_title Journal of materials science. Materials in electronics
container_volume 34
creator Yv, Lina
Wang, Jing
Wang, Xiaohua
Shi, Zhongxiang
Shi, Jun
Tong, Jingge
description In this paper, powders of (Mg 0.2 Co 0.2 Ni 0.2 Zn 0.2 Cu 0.2 )O high-entropy ceramic oxides (HEO S ) were prepared by a hydrothermal method. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM–EDS) and electrochemical technology were used to study the effect of different hydrothermal times on the performance of the HEO S . The obtained results showed that after prolonged hydrothermal treatment, crystalline high-entropy carbonates (Mg 0.33 Ni 0.33 Co 0.33 Zn 0.33 )CO 3 (HECO 3 s) were formed, which facilitated crystal development and grain size reduction of their calcined product (Mg 0.2 Co 0.2 Ni 0.2 Zn 0.2 Cu 0.2 )O. The reduced grain size led to an increase in the specific surface area, which enhanced the electrochemical activity of Co and Ni in the high-entropy oxides and simultaneously considerably improved the electrochemical behavior of the product, resulting in an increase in the charge–discharge capacity from 465.8F/g to 921.1F/g at 0.1 A/g. The Jahn–Teller synergy of Co, Ni, and Cu ions stabilized the crystal structure during Li + intercalation and deintercalation. Good charge/discharge reversibility and high capacity retention were maintained after 500 charge/discharge cycles.
doi_str_mv 10.1007/s10854-023-10602-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2819537904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819537904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-bce00fc7af37c0ce229534f9f1a3c6a68bfbb2f9d3e3778de29d6a64424d9f203</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFXBdfQ0SZt0KcN4gUE3Cu5Cmp5MO3SaMeks5gF8b-NUEFwIgQPh-79z-Am5yuEmB5C3MQdVCAqM0xxKYFQdkVleSE6FYu_HZAZVIakoGDslZzGuAaAUXM3I58I5tGPMvMvabtVSHMbgt_vMmlD7wYyYbQPaXYg-JGjIxhYz7FMkeNviprOmT4TfYhg7PGiezbyntYnY_DFiMImPmUlv8A1mm6QPnenjBTlxaeDlzzwnb_eL1_kjXb48PM3vltQyCSOtLQI4K43j0oJFxqqCC1e53HBbmlLVrq6ZqxqOXErVIKua9C0EE03lGPBzcj1508UfO4yjXvtdGNJKzVSeZLICkSg2UTb4GAM6vQ3dxoS9zkF_162nunWqWx_q1iqF-BSKCR5WGH7V_6S-AJ6mhhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819537904</pqid></control><display><type>article</type><title>Effects of high-entropy carbonate precursors on the electrochemical properties of NaCl-based high-entropy ceramics as anode materials</title><source>SpringerNature Journals</source><creator>Yv, Lina ; Wang, Jing ; Wang, Xiaohua ; Shi, Zhongxiang ; Shi, Jun ; Tong, Jingge</creator><creatorcontrib>Yv, Lina ; Wang, Jing ; Wang, Xiaohua ; Shi, Zhongxiang ; Shi, Jun ; Tong, Jingge</creatorcontrib><description>In this paper, powders of (Mg 0.2 Co 0.2 Ni 0.2 Zn 0.2 Cu 0.2 )O high-entropy ceramic oxides (HEO S ) were prepared by a hydrothermal method. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM–EDS) and electrochemical technology were used to study the effect of different hydrothermal times on the performance of the HEO S . The obtained results showed that after prolonged hydrothermal treatment, crystalline high-entropy carbonates (Mg 0.33 Ni 0.33 Co 0.33 Zn 0.33 )CO 3 (HECO 3 s) were formed, which facilitated crystal development and grain size reduction of their calcined product (Mg 0.2 Co 0.2 Ni 0.2 Zn 0.2 Cu 0.2 )O. The reduced grain size led to an increase in the specific surface area, which enhanced the electrochemical activity of Co and Ni in the high-entropy oxides and simultaneously considerably improved the electrochemical behavior of the product, resulting in an increase in the charge–discharge capacity from 465.8F/g to 921.1F/g at 0.1 A/g. The Jahn–Teller synergy of Co, Ni, and Cu ions stabilized the crystal structure during Li + intercalation and deintercalation. Good charge/discharge reversibility and high capacity retention were maintained after 500 charge/discharge cycles.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-10602-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anodes ; Carbonates ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Discharge ; Electrochemical analysis ; Electrode materials ; Entropy ; Grain size ; Hydrothermal crystal growth ; Hydrothermal treatment ; Jahn-Teller effect ; Materials Science ; Optical and Electronic Materials ; Photoelectrons ; Size reduction ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials science. Materials in electronics, 2023-05, Vol.34 (15), p.1227, Article 1227</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-bce00fc7af37c0ce229534f9f1a3c6a68bfbb2f9d3e3778de29d6a64424d9f203</cites><orcidid>0000-0002-3585-4845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-10602-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-10602-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yv, Lina</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Xiaohua</creatorcontrib><creatorcontrib>Shi, Zhongxiang</creatorcontrib><creatorcontrib>Shi, Jun</creatorcontrib><creatorcontrib>Tong, Jingge</creatorcontrib><title>Effects of high-entropy carbonate precursors on the electrochemical properties of NaCl-based high-entropy ceramics as anode materials</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this paper, powders of (Mg 0.2 Co 0.2 Ni 0.2 Zn 0.2 Cu 0.2 )O high-entropy ceramic oxides (HEO S ) were prepared by a hydrothermal method. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM–EDS) and electrochemical technology were used to study the effect of different hydrothermal times on the performance of the HEO S . The obtained results showed that after prolonged hydrothermal treatment, crystalline high-entropy carbonates (Mg 0.33 Ni 0.33 Co 0.33 Zn 0.33 )CO 3 (HECO 3 s) were formed, which facilitated crystal development and grain size reduction of their calcined product (Mg 0.2 Co 0.2 Ni 0.2 Zn 0.2 Cu 0.2 )O. The reduced grain size led to an increase in the specific surface area, which enhanced the electrochemical activity of Co and Ni in the high-entropy oxides and simultaneously considerably improved the electrochemical behavior of the product, resulting in an increase in the charge–discharge capacity from 465.8F/g to 921.1F/g at 0.1 A/g. The Jahn–Teller synergy of Co, Ni, and Cu ions stabilized the crystal structure during Li + intercalation and deintercalation. Good charge/discharge reversibility and high capacity retention were maintained after 500 charge/discharge cycles.</description><subject>Anodes</subject><subject>Carbonates</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Entropy</subject><subject>Grain size</subject><subject>Hydrothermal crystal growth</subject><subject>Hydrothermal treatment</subject><subject>Jahn-Teller effect</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectrons</subject><subject>Size reduction</subject><subject>X ray photoelectron spectroscopy</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKxDAUhoMoOF5ewFXBdfQ0SZt0KcN4gUE3Cu5Cmp5MO3SaMeks5gF8b-NUEFwIgQPh-79z-Am5yuEmB5C3MQdVCAqM0xxKYFQdkVleSE6FYu_HZAZVIakoGDslZzGuAaAUXM3I58I5tGPMvMvabtVSHMbgt_vMmlD7wYyYbQPaXYg-JGjIxhYz7FMkeNviprOmT4TfYhg7PGiezbyntYnY_DFiMImPmUlv8A1mm6QPnenjBTlxaeDlzzwnb_eL1_kjXb48PM3vltQyCSOtLQI4K43j0oJFxqqCC1e53HBbmlLVrq6ZqxqOXErVIKua9C0EE03lGPBzcj1508UfO4yjXvtdGNJKzVSeZLICkSg2UTb4GAM6vQ3dxoS9zkF_162nunWqWx_q1iqF-BSKCR5WGH7V_6S-AJ6mhhI</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Yv, Lina</creator><creator>Wang, Jing</creator><creator>Wang, Xiaohua</creator><creator>Shi, Zhongxiang</creator><creator>Shi, Jun</creator><creator>Tong, Jingge</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-3585-4845</orcidid></search><sort><creationdate>20230501</creationdate><title>Effects of high-entropy carbonate precursors on the electrochemical properties of NaCl-based high-entropy ceramics as anode materials</title><author>Yv, Lina ; Wang, Jing ; Wang, Xiaohua ; Shi, Zhongxiang ; Shi, Jun ; Tong, Jingge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-bce00fc7af37c0ce229534f9f1a3c6a68bfbb2f9d3e3778de29d6a64424d9f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Carbonates</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Entropy</topic><topic>Grain size</topic><topic>Hydrothermal crystal growth</topic><topic>Hydrothermal treatment</topic><topic>Jahn-Teller effect</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectrons</topic><topic>Size reduction</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yv, Lina</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Xiaohua</creatorcontrib><creatorcontrib>Shi, Zhongxiang</creatorcontrib><creatorcontrib>Shi, Jun</creatorcontrib><creatorcontrib>Tong, Jingge</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yv, Lina</au><au>Wang, Jing</au><au>Wang, Xiaohua</au><au>Shi, Zhongxiang</au><au>Shi, Jun</au><au>Tong, Jingge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of high-entropy carbonate precursors on the electrochemical properties of NaCl-based high-entropy ceramics as anode materials</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>34</volume><issue>15</issue><spage>1227</spage><pages>1227-</pages><artnum>1227</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this paper, powders of (Mg 0.2 Co 0.2 Ni 0.2 Zn 0.2 Cu 0.2 )O high-entropy ceramic oxides (HEO S ) were prepared by a hydrothermal method. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM–EDS) and electrochemical technology were used to study the effect of different hydrothermal times on the performance of the HEO S . The obtained results showed that after prolonged hydrothermal treatment, crystalline high-entropy carbonates (Mg 0.33 Ni 0.33 Co 0.33 Zn 0.33 )CO 3 (HECO 3 s) were formed, which facilitated crystal development and grain size reduction of their calcined product (Mg 0.2 Co 0.2 Ni 0.2 Zn 0.2 Cu 0.2 )O. The reduced grain size led to an increase in the specific surface area, which enhanced the electrochemical activity of Co and Ni in the high-entropy oxides and simultaneously considerably improved the electrochemical behavior of the product, resulting in an increase in the charge–discharge capacity from 465.8F/g to 921.1F/g at 0.1 A/g. The Jahn–Teller synergy of Co, Ni, and Cu ions stabilized the crystal structure during Li + intercalation and deintercalation. Good charge/discharge reversibility and high capacity retention were maintained after 500 charge/discharge cycles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-10602-8</doi><orcidid>https://orcid.org/0000-0002-3585-4845</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2023-05, Vol.34 (15), p.1227, Article 1227
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2819537904
source SpringerNature Journals
subjects Anodes
Carbonates
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal structure
Discharge
Electrochemical analysis
Electrode materials
Entropy
Grain size
Hydrothermal crystal growth
Hydrothermal treatment
Jahn-Teller effect
Materials Science
Optical and Electronic Materials
Photoelectrons
Size reduction
X ray photoelectron spectroscopy
title Effects of high-entropy carbonate precursors on the electrochemical properties of NaCl-based high-entropy ceramics as anode materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20high-entropy%20carbonate%20precursors%20on%20the%20electrochemical%20properties%20of%20NaCl-based%20high-entropy%20ceramics%20as%20anode%20materials&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Yv,%20Lina&rft.date=2023-05-01&rft.volume=34&rft.issue=15&rft.spage=1227&rft.pages=1227-&rft.artnum=1227&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-10602-8&rft_dat=%3Cproquest_cross%3E2819537904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819537904&rft_id=info:pmid/&rfr_iscdi=true