Acoustic Emission Characteristics of the Water Weakening Effect on Cretaceous Weakly Cemented Sandstone

Rock mass stability is often affected by water–rock interaction in underground engineering construction. Cretaceous sandstones often have weak cementation, low strength and strong water-holding capacity, and their rock mass strength is easily weakened by these activities. In this paper, the uniaxial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-05, Vol.15 (10), p.8390
Hauptverfasser: Yang, Yuru, Li, Wenping, Lu, Qinggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rock mass stability is often affected by water–rock interaction in underground engineering construction. Cretaceous sandstones often have weak cementation, low strength and strong water-holding capacity, and their rock mass strength is easily weakened by these activities. In this paper, the uniaxial compressive strength (UCS) and tensile strength (TS) of weakly cemented Cretaceous sandstones from different sedimentary facies under natural and saturated conditions were tested, and the loading process was monitored by the acoustic emission (AE) technique. The results show that the existence of water obviously weakened the mechanical properties of weakly cemented sandstone. The UCS and TS of saturated braided river facies sandstone decreased to 41.24% and 35.95% of their natural states, respectively, while those of desert facies sandstone decreased to 32.90% and 26.98% of their natural states, respectively. The AE characteristics of sandstone from different sedimentary facies were similar during loading due to weakening by water, including a decrease in cumulative AE energy, b-value fluctuation and reduction in the peak frequency distribution range. Fracture in the Brazilian splitting test was mainly due to the rapid initiation and coalescence of microcracks near the peak point. However, in the uniaxial compression test, the macro fractures were caused by many microcracks that occurred continuously during loading and finally connected. The high quartz and low feldspar contents strengthened the mechanical properties of braided fluvial facies sandstone compared to those of desert facies sandstone and lessened the effect of water weakening.
ISSN:2071-1050
2071-1050
DOI:10.3390/su15108390