Converting Seasonal Measurements to Monthly Groundwater Levels through GRACE Data Fusion

Groundwater depletion occurs when the extraction exceeds its recharge and further impacts water resource management around the world, especially in developing countries. In India, most groundwater level observations are only available on a seasonal scale, i.e., January (late post-monsoon), May (pre-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-05, Vol.15 (10), p.8295
Hauptverfasser: Ali, Muhammad Zeeshan, Chu, Hone-Jay, Tatas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 8295
container_title Sustainability
container_volume 15
creator Ali, Muhammad Zeeshan
Chu, Hone-Jay
Tatas
description Groundwater depletion occurs when the extraction exceeds its recharge and further impacts water resource management around the world, especially in developing countries. In India, most groundwater level observations are only available on a seasonal scale, i.e., January (late post-monsoon), May (pre-monsoon), August (monsoon), and November (early post-monsoon). The Gravity Recovery and Climate Experiment (GRACE) data are available to estimate the monthly variation in groundwater storage (GWS) by subtracting precipitation runoff, canopy water, soil moisture, and solid water (snow and ice) from the GLDAS model. Considering GRACE-based GWS data, the data fusion is further used to estimate monthly spatial maps of groundwater levels using time-varying spatial regression. Seasonal groundwater monitoring data are used in the training stage to identify spatial relations between groundwater level and GWS changes. Estimation of unknown groundwater levels through data fusion is accomplished by utilizing spatial coefficients that remain consistent with the nearest observed months. Monthly groundwater level maps show that the lowest groundwater level is 50 to 55 m below the earth’s surface in the state of Rajasthan. The accuracy of the estimated groundwater level is validated against observations, yielding an average RMSE of 2.37 m. The use of the GWS information enables identification of monthly spatial patterns of groundwater levels. The results will be employed to identify hotspots of groundwater depletion in India, facilitating efforts to mitigate the adverse effects of excessive groundwater extraction.
doi_str_mv 10.3390/su15108295
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2819493208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750996016</galeid><sourcerecordid>A750996016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-b6865e184310c1a9397a7f6553c54b0d57c3bff2e3c04b59e2933ca9af68ba6c3</originalsourceid><addsrcrecordid>eNpVkVFLwzAQx4soOOZe_AQBnxQ6k6Zpm8dRtznYEDYF30qaXbuOLplJOt23NzJBd_dwx93vf3D8g-CW4CGlHD_ajjCCs4izi6AX4ZSEBDN8-a-_DgbWbrEPSgknSS94z7U6gHGNqtEKhNVKtGjhm87ADpSzyGm00Mpt2iOaGt2p9adwYNAcDtD67cbP6g2aLkf5GD0JJ9Cks41WN8FVJVoLg9_aD94m49f8OZy_TGf5aB5KGqUuLJMsYUCymBIsieCUpyKtEsaoZHGJ1yyVtKyqCKjEcck4RJxSKbiokqwUiaT94O50d2_0RwfWFVvdGf-FLaKM8JjTCGeeGp6oWrRQNKrSzgjpcw27RmoFVePno5RhzhNMEi-4PxN4xsGXq0VnbTFbLc_ZhxMrjbbWQFXsTbMT5lgQXPw4U_w5Q78BJ-p-uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819493208</pqid></control><display><type>article</type><title>Converting Seasonal Measurements to Monthly Groundwater Levels through GRACE Data Fusion</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ali, Muhammad Zeeshan ; Chu, Hone-Jay ; Tatas</creator><creatorcontrib>Ali, Muhammad Zeeshan ; Chu, Hone-Jay ; Tatas</creatorcontrib><description>Groundwater depletion occurs when the extraction exceeds its recharge and further impacts water resource management around the world, especially in developing countries. In India, most groundwater level observations are only available on a seasonal scale, i.e., January (late post-monsoon), May (pre-monsoon), August (monsoon), and November (early post-monsoon). The Gravity Recovery and Climate Experiment (GRACE) data are available to estimate the monthly variation in groundwater storage (GWS) by subtracting precipitation runoff, canopy water, soil moisture, and solid water (snow and ice) from the GLDAS model. Considering GRACE-based GWS data, the data fusion is further used to estimate monthly spatial maps of groundwater levels using time-varying spatial regression. Seasonal groundwater monitoring data are used in the training stage to identify spatial relations between groundwater level and GWS changes. Estimation of unknown groundwater levels through data fusion is accomplished by utilizing spatial coefficients that remain consistent with the nearest observed months. Monthly groundwater level maps show that the lowest groundwater level is 50 to 55 m below the earth’s surface in the state of Rajasthan. The accuracy of the estimated groundwater level is validated against observations, yielding an average RMSE of 2.37 m. The use of the GWS information enables identification of monthly spatial patterns of groundwater levels. The results will be employed to identify hotspots of groundwater depletion in India, facilitating efforts to mitigate the adverse effects of excessive groundwater extraction.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15108295</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Data assimilation ; Data integration ; Datasets ; Developing countries ; GRACE (experiment) ; Groundwater ; Groundwater data ; Groundwater depletion ; Groundwater levels ; Groundwater overdraft ; Groundwater runoff ; Groundwater storage ; Hydrology ; LDCs ; Management ; Monsoons ; Oxidation ; Precipitation (Meteorology) ; Rainfall-runoff relationships ; Regions ; Resource management ; Soil moisture ; Soil water storage ; Surface water ; Water ; Water monitoring ; Water resources management ; Water, Underground ; Wind</subject><ispartof>Sustainability, 2023-05, Vol.15 (10), p.8295</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-b6865e184310c1a9397a7f6553c54b0d57c3bff2e3c04b59e2933ca9af68ba6c3</cites><orcidid>0000-0001-8062-462X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ali, Muhammad Zeeshan</creatorcontrib><creatorcontrib>Chu, Hone-Jay</creatorcontrib><creatorcontrib>Tatas</creatorcontrib><title>Converting Seasonal Measurements to Monthly Groundwater Levels through GRACE Data Fusion</title><title>Sustainability</title><description>Groundwater depletion occurs when the extraction exceeds its recharge and further impacts water resource management around the world, especially in developing countries. In India, most groundwater level observations are only available on a seasonal scale, i.e., January (late post-monsoon), May (pre-monsoon), August (monsoon), and November (early post-monsoon). The Gravity Recovery and Climate Experiment (GRACE) data are available to estimate the monthly variation in groundwater storage (GWS) by subtracting precipitation runoff, canopy water, soil moisture, and solid water (snow and ice) from the GLDAS model. Considering GRACE-based GWS data, the data fusion is further used to estimate monthly spatial maps of groundwater levels using time-varying spatial regression. Seasonal groundwater monitoring data are used in the training stage to identify spatial relations between groundwater level and GWS changes. Estimation of unknown groundwater levels through data fusion is accomplished by utilizing spatial coefficients that remain consistent with the nearest observed months. Monthly groundwater level maps show that the lowest groundwater level is 50 to 55 m below the earth’s surface in the state of Rajasthan. The accuracy of the estimated groundwater level is validated against observations, yielding an average RMSE of 2.37 m. The use of the GWS information enables identification of monthly spatial patterns of groundwater levels. The results will be employed to identify hotspots of groundwater depletion in India, facilitating efforts to mitigate the adverse effects of excessive groundwater extraction.</description><subject>Analysis</subject><subject>Data assimilation</subject><subject>Data integration</subject><subject>Datasets</subject><subject>Developing countries</subject><subject>GRACE (experiment)</subject><subject>Groundwater</subject><subject>Groundwater data</subject><subject>Groundwater depletion</subject><subject>Groundwater levels</subject><subject>Groundwater overdraft</subject><subject>Groundwater runoff</subject><subject>Groundwater storage</subject><subject>Hydrology</subject><subject>LDCs</subject><subject>Management</subject><subject>Monsoons</subject><subject>Oxidation</subject><subject>Precipitation (Meteorology)</subject><subject>Rainfall-runoff relationships</subject><subject>Regions</subject><subject>Resource management</subject><subject>Soil moisture</subject><subject>Soil water storage</subject><subject>Surface water</subject><subject>Water</subject><subject>Water monitoring</subject><subject>Water resources management</subject><subject>Water, Underground</subject><subject>Wind</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkVFLwzAQx4soOOZe_AQBnxQ6k6Zpm8dRtznYEDYF30qaXbuOLplJOt23NzJBd_dwx93vf3D8g-CW4CGlHD_ajjCCs4izi6AX4ZSEBDN8-a-_DgbWbrEPSgknSS94z7U6gHGNqtEKhNVKtGjhm87ADpSzyGm00Mpt2iOaGt2p9adwYNAcDtD67cbP6g2aLkf5GD0JJ9Cks41WN8FVJVoLg9_aD94m49f8OZy_TGf5aB5KGqUuLJMsYUCymBIsieCUpyKtEsaoZHGJ1yyVtKyqCKjEcck4RJxSKbiokqwUiaT94O50d2_0RwfWFVvdGf-FLaKM8JjTCGeeGp6oWrRQNKrSzgjpcw27RmoFVePno5RhzhNMEi-4PxN4xsGXq0VnbTFbLc_ZhxMrjbbWQFXsTbMT5lgQXPw4U_w5Q78BJ-p-uQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ali, Muhammad Zeeshan</creator><creator>Chu, Hone-Jay</creator><creator>Tatas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8062-462X</orcidid></search><sort><creationdate>20230501</creationdate><title>Converting Seasonal Measurements to Monthly Groundwater Levels through GRACE Data Fusion</title><author>Ali, Muhammad Zeeshan ; Chu, Hone-Jay ; Tatas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-b6865e184310c1a9397a7f6553c54b0d57c3bff2e3c04b59e2933ca9af68ba6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Data assimilation</topic><topic>Data integration</topic><topic>Datasets</topic><topic>Developing countries</topic><topic>GRACE (experiment)</topic><topic>Groundwater</topic><topic>Groundwater data</topic><topic>Groundwater depletion</topic><topic>Groundwater levels</topic><topic>Groundwater overdraft</topic><topic>Groundwater runoff</topic><topic>Groundwater storage</topic><topic>Hydrology</topic><topic>LDCs</topic><topic>Management</topic><topic>Monsoons</topic><topic>Oxidation</topic><topic>Precipitation (Meteorology)</topic><topic>Rainfall-runoff relationships</topic><topic>Regions</topic><topic>Resource management</topic><topic>Soil moisture</topic><topic>Soil water storage</topic><topic>Surface water</topic><topic>Water</topic><topic>Water monitoring</topic><topic>Water resources management</topic><topic>Water, Underground</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Muhammad Zeeshan</creatorcontrib><creatorcontrib>Chu, Hone-Jay</creatorcontrib><creatorcontrib>Tatas</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Muhammad Zeeshan</au><au>Chu, Hone-Jay</au><au>Tatas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Converting Seasonal Measurements to Monthly Groundwater Levels through GRACE Data Fusion</atitle><jtitle>Sustainability</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>15</volume><issue>10</issue><spage>8295</spage><pages>8295-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Groundwater depletion occurs when the extraction exceeds its recharge and further impacts water resource management around the world, especially in developing countries. In India, most groundwater level observations are only available on a seasonal scale, i.e., January (late post-monsoon), May (pre-monsoon), August (monsoon), and November (early post-monsoon). The Gravity Recovery and Climate Experiment (GRACE) data are available to estimate the monthly variation in groundwater storage (GWS) by subtracting precipitation runoff, canopy water, soil moisture, and solid water (snow and ice) from the GLDAS model. Considering GRACE-based GWS data, the data fusion is further used to estimate monthly spatial maps of groundwater levels using time-varying spatial regression. Seasonal groundwater monitoring data are used in the training stage to identify spatial relations between groundwater level and GWS changes. Estimation of unknown groundwater levels through data fusion is accomplished by utilizing spatial coefficients that remain consistent with the nearest observed months. Monthly groundwater level maps show that the lowest groundwater level is 50 to 55 m below the earth’s surface in the state of Rajasthan. The accuracy of the estimated groundwater level is validated against observations, yielding an average RMSE of 2.37 m. The use of the GWS information enables identification of monthly spatial patterns of groundwater levels. The results will be employed to identify hotspots of groundwater depletion in India, facilitating efforts to mitigate the adverse effects of excessive groundwater extraction.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15108295</doi><orcidid>https://orcid.org/0000-0001-8062-462X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2023-05, Vol.15 (10), p.8295
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2819493208
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis
Data assimilation
Data integration
Datasets
Developing countries
GRACE (experiment)
Groundwater
Groundwater data
Groundwater depletion
Groundwater levels
Groundwater overdraft
Groundwater runoff
Groundwater storage
Hydrology
LDCs
Management
Monsoons
Oxidation
Precipitation (Meteorology)
Rainfall-runoff relationships
Regions
Resource management
Soil moisture
Soil water storage
Surface water
Water
Water monitoring
Water resources management
Water, Underground
Wind
title Converting Seasonal Measurements to Monthly Groundwater Levels through GRACE Data Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Converting%20Seasonal%20Measurements%20to%20Monthly%20Groundwater%20Levels%20through%20GRACE%20Data%20Fusion&rft.jtitle=Sustainability&rft.au=Ali,%20Muhammad%20Zeeshan&rft.date=2023-05-01&rft.volume=15&rft.issue=10&rft.spage=8295&rft.pages=8295-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15108295&rft_dat=%3Cgale_proqu%3EA750996016%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819493208&rft_id=info:pmid/&rft_galeid=A750996016&rfr_iscdi=true