Task Containerization and Container Placement Optimization for MEC: A Joint Communication and Computing Perspective
Containers are used by an increasing number of Internet service providers to deploy their applications in multi-access edge computing (MEC) systems. Although container-based virtualization technologies significantly increase application availability, they may suffer expensive communication overhead...
Gespeichert in:
Veröffentlicht in: | Processes 2023-05, Vol.11 (5), p.1560 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 1560 |
container_title | Processes |
container_volume | 11 |
creator | Liu, Ao Yang, Shaoshi Tan, Jingsheng Liang, Zongze Sun, Jiasen Wen, Tao Yan, Hongyan |
description | Containers are used by an increasing number of Internet service providers to deploy their applications in multi-access edge computing (MEC) systems. Although container-based virtualization technologies significantly increase application availability, they may suffer expensive communication overhead and resource use imbalances. However, so far there has been a scarcity of studies to conquer these difficulties. In this paper, we design a workflow-based mathematical model for applications built upon interdependent multitasking composition, formulate a multi-objective combinatorial optimization problem composed of two subproblems—graph partitioning and multi-choice vector bin packing, and propose several joint task-containerization-and -container-placement methods to reduce communication overhead and balance multi-type computing resource utilization. The performance superiority of the proposed algorithms is demonstrated by comparison with the state-of-the-art task and container scheduling schemes. |
doi_str_mv | 10.3390/pr11051560 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2819482275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750994677</galeid><sourcerecordid>A750994677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5ba38bda3a95984f51818817f188b96462f7e48c38041b0ba12baeae2d63d74e3</originalsourceid><addsrcrecordid>eNpNUU1rwzAMDWODla6X_YLAboN2dpzE9m4ldF90tIfuHBxHLu4aO7Odwfbr59GNVgJJPD1JoJck1xjNCOHorncYowIXJTpLRlmW0SmnmJ6f1JfJxPsdisYxYUU5SvxG-Pe0siYIbcDpbxG0Nakw7RFM13shoQMT0lUfdPdPUtalr4vqPp2nL1bHbmW7bjBanu7o-iFos03X4HwPMuhPuEoulNh7mPzlcfL2sNhUT9Pl6vG5mi-nMuMkTItGENa0gghecJarAjPMGKYqxoaXeZkpCjmThKEcN6gROGsECMjakrQ0BzJObg57e2c_BvCh3tnBmXiyzhjmOYtvKSJrdmBtxR5qbZQNTsjoLXRaWgNKR3xOC8R5XlIaB24PA9JZ7x2oune6E-6rxqj-FaI-CkF-AADwews</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819482275</pqid></control><display><type>article</type><title>Task Containerization and Container Placement Optimization for MEC: A Joint Communication and Computing Perspective</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Ao ; Yang, Shaoshi ; Tan, Jingsheng ; Liang, Zongze ; Sun, Jiasen ; Wen, Tao ; Yan, Hongyan</creator><creatorcontrib>Liu, Ao ; Yang, Shaoshi ; Tan, Jingsheng ; Liang, Zongze ; Sun, Jiasen ; Wen, Tao ; Yan, Hongyan</creatorcontrib><description>Containers are used by an increasing number of Internet service providers to deploy their applications in multi-access edge computing (MEC) systems. Although container-based virtualization technologies significantly increase application availability, they may suffer expensive communication overhead and resource use imbalances. However, so far there has been a scarcity of studies to conquer these difficulties. In this paper, we design a workflow-based mathematical model for applications built upon interdependent multitasking composition, formulate a multi-objective combinatorial optimization problem composed of two subproblems—graph partitioning and multi-choice vector bin packing, and propose several joint task-containerization-and -container-placement methods to reduce communication overhead and balance multi-type computing resource utilization. The performance superiority of the proposed algorithms is demonstrated by comparison with the state-of-the-art task and container scheduling schemes.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11051560</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Cloud computing ; Combinatorial analysis ; Communication ; Computer centers ; Containerization ; Containers ; Edge computing ; Efficiency ; Internet service providers ; Mathematical models ; Mobile computing ; Multiple objective analysis ; Multitasking ; Optimization ; Packing problem ; Placement ; Resource utilization ; Scheduling ; Servers ; Task scheduling ; Virtualization ; Workflow</subject><ispartof>Processes, 2023-05, Vol.11 (5), p.1560</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-5ba38bda3a95984f51818817f188b96462f7e48c38041b0ba12baeae2d63d74e3</cites><orcidid>0000-0003-2395-1637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Ao</creatorcontrib><creatorcontrib>Yang, Shaoshi</creatorcontrib><creatorcontrib>Tan, Jingsheng</creatorcontrib><creatorcontrib>Liang, Zongze</creatorcontrib><creatorcontrib>Sun, Jiasen</creatorcontrib><creatorcontrib>Wen, Tao</creatorcontrib><creatorcontrib>Yan, Hongyan</creatorcontrib><title>Task Containerization and Container Placement Optimization for MEC: A Joint Communication and Computing Perspective</title><title>Processes</title><description>Containers are used by an increasing number of Internet service providers to deploy their applications in multi-access edge computing (MEC) systems. Although container-based virtualization technologies significantly increase application availability, they may suffer expensive communication overhead and resource use imbalances. However, so far there has been a scarcity of studies to conquer these difficulties. In this paper, we design a workflow-based mathematical model for applications built upon interdependent multitasking composition, formulate a multi-objective combinatorial optimization problem composed of two subproblems—graph partitioning and multi-choice vector bin packing, and propose several joint task-containerization-and -container-placement methods to reduce communication overhead and balance multi-type computing resource utilization. The performance superiority of the proposed algorithms is demonstrated by comparison with the state-of-the-art task and container scheduling schemes.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Cloud computing</subject><subject>Combinatorial analysis</subject><subject>Communication</subject><subject>Computer centers</subject><subject>Containerization</subject><subject>Containers</subject><subject>Edge computing</subject><subject>Efficiency</subject><subject>Internet service providers</subject><subject>Mathematical models</subject><subject>Mobile computing</subject><subject>Multiple objective analysis</subject><subject>Multitasking</subject><subject>Optimization</subject><subject>Packing problem</subject><subject>Placement</subject><subject>Resource utilization</subject><subject>Scheduling</subject><subject>Servers</subject><subject>Task scheduling</subject><subject>Virtualization</subject><subject>Workflow</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUU1rwzAMDWODla6X_YLAboN2dpzE9m4ldF90tIfuHBxHLu4aO7Odwfbr59GNVgJJPD1JoJck1xjNCOHorncYowIXJTpLRlmW0SmnmJ6f1JfJxPsdisYxYUU5SvxG-Pe0siYIbcDpbxG0Nakw7RFM13shoQMT0lUfdPdPUtalr4vqPp2nL1bHbmW7bjBanu7o-iFos03X4HwPMuhPuEoulNh7mPzlcfL2sNhUT9Pl6vG5mi-nMuMkTItGENa0gghecJarAjPMGKYqxoaXeZkpCjmThKEcN6gROGsECMjakrQ0BzJObg57e2c_BvCh3tnBmXiyzhjmOYtvKSJrdmBtxR5qbZQNTsjoLXRaWgNKR3xOC8R5XlIaB24PA9JZ7x2oune6E-6rxqj-FaI-CkF-AADwews</recordid><startdate>20230519</startdate><enddate>20230519</enddate><creator>Liu, Ao</creator><creator>Yang, Shaoshi</creator><creator>Tan, Jingsheng</creator><creator>Liang, Zongze</creator><creator>Sun, Jiasen</creator><creator>Wen, Tao</creator><creator>Yan, Hongyan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2395-1637</orcidid></search><sort><creationdate>20230519</creationdate><title>Task Containerization and Container Placement Optimization for MEC: A Joint Communication and Computing Perspective</title><author>Liu, Ao ; Yang, Shaoshi ; Tan, Jingsheng ; Liang, Zongze ; Sun, Jiasen ; Wen, Tao ; Yan, Hongyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5ba38bda3a95984f51818817f188b96462f7e48c38041b0ba12baeae2d63d74e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Cloud computing</topic><topic>Combinatorial analysis</topic><topic>Communication</topic><topic>Computer centers</topic><topic>Containerization</topic><topic>Containers</topic><topic>Edge computing</topic><topic>Efficiency</topic><topic>Internet service providers</topic><topic>Mathematical models</topic><topic>Mobile computing</topic><topic>Multiple objective analysis</topic><topic>Multitasking</topic><topic>Optimization</topic><topic>Packing problem</topic><topic>Placement</topic><topic>Resource utilization</topic><topic>Scheduling</topic><topic>Servers</topic><topic>Task scheduling</topic><topic>Virtualization</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ao</creatorcontrib><creatorcontrib>Yang, Shaoshi</creatorcontrib><creatorcontrib>Tan, Jingsheng</creatorcontrib><creatorcontrib>Liang, Zongze</creatorcontrib><creatorcontrib>Sun, Jiasen</creatorcontrib><creatorcontrib>Wen, Tao</creatorcontrib><creatorcontrib>Yan, Hongyan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ao</au><au>Yang, Shaoshi</au><au>Tan, Jingsheng</au><au>Liang, Zongze</au><au>Sun, Jiasen</au><au>Wen, Tao</au><au>Yan, Hongyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Containerization and Container Placement Optimization for MEC: A Joint Communication and Computing Perspective</atitle><jtitle>Processes</jtitle><date>2023-05-19</date><risdate>2023</risdate><volume>11</volume><issue>5</issue><spage>1560</spage><pages>1560-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Containers are used by an increasing number of Internet service providers to deploy their applications in multi-access edge computing (MEC) systems. Although container-based virtualization technologies significantly increase application availability, they may suffer expensive communication overhead and resource use imbalances. However, so far there has been a scarcity of studies to conquer these difficulties. In this paper, we design a workflow-based mathematical model for applications built upon interdependent multitasking composition, formulate a multi-objective combinatorial optimization problem composed of two subproblems—graph partitioning and multi-choice vector bin packing, and propose several joint task-containerization-and -container-placement methods to reduce communication overhead and balance multi-type computing resource utilization. The performance superiority of the proposed algorithms is demonstrated by comparison with the state-of-the-art task and container scheduling schemes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11051560</doi><orcidid>https://orcid.org/0000-0003-2395-1637</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-05, Vol.11 (5), p.1560 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2819482275 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Analysis Cloud computing Combinatorial analysis Communication Computer centers Containerization Containers Edge computing Efficiency Internet service providers Mathematical models Mobile computing Multiple objective analysis Multitasking Optimization Packing problem Placement Resource utilization Scheduling Servers Task scheduling Virtualization Workflow |
title | Task Containerization and Container Placement Optimization for MEC: A Joint Communication and Computing Perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Containerization%20and%20Container%20Placement%20Optimization%20for%20MEC:%20A%20Joint%20Communication%20and%20Computing%20Perspective&rft.jtitle=Processes&rft.au=Liu,%20Ao&rft.date=2023-05-19&rft.volume=11&rft.issue=5&rft.spage=1560&rft.pages=1560-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11051560&rft_dat=%3Cgale_proqu%3EA750994677%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819482275&rft_id=info:pmid/&rft_galeid=A750994677&rfr_iscdi=true |