Efficient Face Region Occlusion Repair Based on T-GANs

In the image restoration task, the generative adversarial network (GAN) demonstrates excellent performance. However, there remain significant challenges concerning the task of generative face region inpainting. Traditional model approaches are ineffective in maintaining global consistency among faci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-05, Vol.12 (10), p.2162
Hauptverfasser: Man, Qiaoyue, Cho, Young-Im
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 2162
container_title Electronics (Basel)
container_volume 12
creator Man, Qiaoyue
Cho, Young-Im
description In the image restoration task, the generative adversarial network (GAN) demonstrates excellent performance. However, there remain significant challenges concerning the task of generative face region inpainting. Traditional model approaches are ineffective in maintaining global consistency among facial components and recovering fine facial details. To address this challenge, this study proposes a facial restoration generation network combined a transformer module and GAN to accurately detect the missing feature parts of the face and perform effective and fine-grained restoration generation. We validate the proposed model using different image quality evaluation methods and several open-source face datasets and experimentally demonstrate that our model outperforms other current state-of-the-art network models in terms of generated image quality and the coherent naturalness of facial features in face image restoration generation tasks.
doi_str_mv 10.3390/electronics12102162
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2819444020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750889448</galeid><sourcerecordid>A750889448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f53e036911256ee66e1bcf032c9613861572fd4bee8576e85ea43e9e363459b03</originalsourceid><addsrcrecordid>eNptUE1rAjEQDaWFivUX9LLQ89oks5vdHK2oLUgFseeQjROJrBubrIf--0bswYIzMF-8mXk8Qp4ZHQNI-ootmj74zpnIOKOcCX5HBpxWMpdc8vur-pGMYtzTZJJBDXRAxMxaZxx2fTbXBrM17pzvspUx7SmeqzUetQvZm464zVK_yReTz_hEHqxuI47-8pB8zWeb6Xu-XC0-ppNlbhK1PrclIAUhGeOlQBQCWWMsBW6kSAQEKytut0WDWJeVSAF1ASgRBBSlbCgMycvl7jH47xPGXu39KXTppeI1k0VRUH6F2ukWleus74M2BxeNmlQlresErBNqfAOVfIsHZ3yH1qX5vwW4LJjgYwxo1TG4gw4_ilF1ll7dkB5-ATpidVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819444020</pqid></control><display><type>article</type><title>Efficient Face Region Occlusion Repair Based on T-GANs</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Man, Qiaoyue ; Cho, Young-Im</creator><creatorcontrib>Man, Qiaoyue ; Cho, Young-Im</creatorcontrib><description>In the image restoration task, the generative adversarial network (GAN) demonstrates excellent performance. However, there remain significant challenges concerning the task of generative face region inpainting. Traditional model approaches are ineffective in maintaining global consistency among facial components and recovering fine facial details. To address this challenge, this study proposes a facial restoration generation network combined a transformer module and GAN to accurately detect the missing feature parts of the face and perform effective and fine-grained restoration generation. We validate the proposed model using different image quality evaluation methods and several open-source face datasets and experimentally demonstrate that our model outperforms other current state-of-the-art network models in terms of generated image quality and the coherent naturalness of facial features in face image restoration generation tasks.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12102162</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Deep learning ; Face ; Generative adversarial networks ; Image processing ; Image quality ; Image restoration ; Methods ; Neural networks ; Occlusion ; Quality assessment ; Semantics</subject><ispartof>Electronics (Basel), 2023-05, Vol.12 (10), p.2162</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c339t-f53e036911256ee66e1bcf032c9613861572fd4bee8576e85ea43e9e363459b03</cites><orcidid>0000-0003-0184-7599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Man, Qiaoyue</creatorcontrib><creatorcontrib>Cho, Young-Im</creatorcontrib><title>Efficient Face Region Occlusion Repair Based on T-GANs</title><title>Electronics (Basel)</title><description>In the image restoration task, the generative adversarial network (GAN) demonstrates excellent performance. However, there remain significant challenges concerning the task of generative face region inpainting. Traditional model approaches are ineffective in maintaining global consistency among facial components and recovering fine facial details. To address this challenge, this study proposes a facial restoration generation network combined a transformer module and GAN to accurately detect the missing feature parts of the face and perform effective and fine-grained restoration generation. We validate the proposed model using different image quality evaluation methods and several open-source face datasets and experimentally demonstrate that our model outperforms other current state-of-the-art network models in terms of generated image quality and the coherent naturalness of facial features in face image restoration generation tasks.</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Face</subject><subject>Generative adversarial networks</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>Quality assessment</subject><subject>Semantics</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUE1rAjEQDaWFivUX9LLQ89oks5vdHK2oLUgFseeQjROJrBubrIf--0bswYIzMF-8mXk8Qp4ZHQNI-ootmj74zpnIOKOcCX5HBpxWMpdc8vur-pGMYtzTZJJBDXRAxMxaZxx2fTbXBrM17pzvspUx7SmeqzUetQvZm464zVK_yReTz_hEHqxuI47-8pB8zWeb6Xu-XC0-ppNlbhK1PrclIAUhGeOlQBQCWWMsBW6kSAQEKytut0WDWJeVSAF1ASgRBBSlbCgMycvl7jH47xPGXu39KXTppeI1k0VRUH6F2ukWleus74M2BxeNmlQlresErBNqfAOVfIsHZ3yH1qX5vwW4LJjgYwxo1TG4gw4_ilF1ll7dkB5-ATpidVg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Man, Qiaoyue</creator><creator>Cho, Young-Im</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0184-7599</orcidid></search><sort><creationdate>20230501</creationdate><title>Efficient Face Region Occlusion Repair Based on T-GANs</title><author>Man, Qiaoyue ; Cho, Young-Im</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f53e036911256ee66e1bcf032c9613861572fd4bee8576e85ea43e9e363459b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Face</topic><topic>Generative adversarial networks</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>Quality assessment</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Man, Qiaoyue</creatorcontrib><creatorcontrib>Cho, Young-Im</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Man, Qiaoyue</au><au>Cho, Young-Im</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Face Region Occlusion Repair Based on T-GANs</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>12</volume><issue>10</issue><spage>2162</spage><pages>2162-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In the image restoration task, the generative adversarial network (GAN) demonstrates excellent performance. However, there remain significant challenges concerning the task of generative face region inpainting. Traditional model approaches are ineffective in maintaining global consistency among facial components and recovering fine facial details. To address this challenge, this study proposes a facial restoration generation network combined a transformer module and GAN to accurately detect the missing feature parts of the face and perform effective and fine-grained restoration generation. We validate the proposed model using different image quality evaluation methods and several open-source face datasets and experimentally demonstrate that our model outperforms other current state-of-the-art network models in terms of generated image quality and the coherent naturalness of facial features in face image restoration generation tasks.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12102162</doi><orcidid>https://orcid.org/0000-0003-0184-7599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-05, Vol.12 (10), p.2162
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2819444020
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Deep learning
Face
Generative adversarial networks
Image processing
Image quality
Image restoration
Methods
Neural networks
Occlusion
Quality assessment
Semantics
title Efficient Face Region Occlusion Repair Based on T-GANs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Face%20Region%20Occlusion%20Repair%20Based%20on%20T-GANs&rft.jtitle=Electronics%20(Basel)&rft.au=Man,%20Qiaoyue&rft.date=2023-05-01&rft.volume=12&rft.issue=10&rft.spage=2162&rft.pages=2162-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12102162&rft_dat=%3Cgale_proqu%3EA750889448%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819444020&rft_id=info:pmid/&rft_galeid=A750889448&rfr_iscdi=true