Efficient Face Region Occlusion Repair Based on T-GANs
In the image restoration task, the generative adversarial network (GAN) demonstrates excellent performance. However, there remain significant challenges concerning the task of generative face region inpainting. Traditional model approaches are ineffective in maintaining global consistency among faci...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-05, Vol.12 (10), p.2162 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 2162 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Man, Qiaoyue Cho, Young-Im |
description | In the image restoration task, the generative adversarial network (GAN) demonstrates excellent performance. However, there remain significant challenges concerning the task of generative face region inpainting. Traditional model approaches are ineffective in maintaining global consistency among facial components and recovering fine facial details. To address this challenge, this study proposes a facial restoration generation network combined a transformer module and GAN to accurately detect the missing feature parts of the face and perform effective and fine-grained restoration generation. We validate the proposed model using different image quality evaluation methods and several open-source face datasets and experimentally demonstrate that our model outperforms other current state-of-the-art network models in terms of generated image quality and the coherent naturalness of facial features in face image restoration generation tasks. |
doi_str_mv | 10.3390/electronics12102162 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2819444020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750889448</galeid><sourcerecordid>A750889448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f53e036911256ee66e1bcf032c9613861572fd4bee8576e85ea43e9e363459b03</originalsourceid><addsrcrecordid>eNptUE1rAjEQDaWFivUX9LLQ89oks5vdHK2oLUgFseeQjROJrBubrIf--0bswYIzMF-8mXk8Qp4ZHQNI-ootmj74zpnIOKOcCX5HBpxWMpdc8vur-pGMYtzTZJJBDXRAxMxaZxx2fTbXBrM17pzvspUx7SmeqzUetQvZm464zVK_yReTz_hEHqxuI47-8pB8zWeb6Xu-XC0-ppNlbhK1PrclIAUhGeOlQBQCWWMsBW6kSAQEKytut0WDWJeVSAF1ASgRBBSlbCgMycvl7jH47xPGXu39KXTppeI1k0VRUH6F2ukWleus74M2BxeNmlQlresErBNqfAOVfIsHZ3yH1qX5vwW4LJjgYwxo1TG4gw4_ilF1ll7dkB5-ATpidVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819444020</pqid></control><display><type>article</type><title>Efficient Face Region Occlusion Repair Based on T-GANs</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Man, Qiaoyue ; Cho, Young-Im</creator><creatorcontrib>Man, Qiaoyue ; Cho, Young-Im</creatorcontrib><description>In the image restoration task, the generative adversarial network (GAN) demonstrates excellent performance. However, there remain significant challenges concerning the task of generative face region inpainting. Traditional model approaches are ineffective in maintaining global consistency among facial components and recovering fine facial details. To address this challenge, this study proposes a facial restoration generation network combined a transformer module and GAN to accurately detect the missing feature parts of the face and perform effective and fine-grained restoration generation. We validate the proposed model using different image quality evaluation methods and several open-source face datasets and experimentally demonstrate that our model outperforms other current state-of-the-art network models in terms of generated image quality and the coherent naturalness of facial features in face image restoration generation tasks.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12102162</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Deep learning ; Face ; Generative adversarial networks ; Image processing ; Image quality ; Image restoration ; Methods ; Neural networks ; Occlusion ; Quality assessment ; Semantics</subject><ispartof>Electronics (Basel), 2023-05, Vol.12 (10), p.2162</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c339t-f53e036911256ee66e1bcf032c9613861572fd4bee8576e85ea43e9e363459b03</cites><orcidid>0000-0003-0184-7599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Man, Qiaoyue</creatorcontrib><creatorcontrib>Cho, Young-Im</creatorcontrib><title>Efficient Face Region Occlusion Repair Based on T-GANs</title><title>Electronics (Basel)</title><description>In the image restoration task, the generative adversarial network (GAN) demonstrates excellent performance. However, there remain significant challenges concerning the task of generative face region inpainting. Traditional model approaches are ineffective in maintaining global consistency among facial components and recovering fine facial details. To address this challenge, this study proposes a facial restoration generation network combined a transformer module and GAN to accurately detect the missing feature parts of the face and perform effective and fine-grained restoration generation. We validate the proposed model using different image quality evaluation methods and several open-source face datasets and experimentally demonstrate that our model outperforms other current state-of-the-art network models in terms of generated image quality and the coherent naturalness of facial features in face image restoration generation tasks.</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Face</subject><subject>Generative adversarial networks</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>Quality assessment</subject><subject>Semantics</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUE1rAjEQDaWFivUX9LLQ89oks5vdHK2oLUgFseeQjROJrBubrIf--0bswYIzMF-8mXk8Qp4ZHQNI-ootmj74zpnIOKOcCX5HBpxWMpdc8vur-pGMYtzTZJJBDXRAxMxaZxx2fTbXBrM17pzvspUx7SmeqzUetQvZm464zVK_yReTz_hEHqxuI47-8pB8zWeb6Xu-XC0-ppNlbhK1PrclIAUhGeOlQBQCWWMsBW6kSAQEKytut0WDWJeVSAF1ASgRBBSlbCgMycvl7jH47xPGXu39KXTppeI1k0VRUH6F2ukWleus74M2BxeNmlQlresErBNqfAOVfIsHZ3yH1qX5vwW4LJjgYwxo1TG4gw4_ilF1ll7dkB5-ATpidVg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Man, Qiaoyue</creator><creator>Cho, Young-Im</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0184-7599</orcidid></search><sort><creationdate>20230501</creationdate><title>Efficient Face Region Occlusion Repair Based on T-GANs</title><author>Man, Qiaoyue ; Cho, Young-Im</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f53e036911256ee66e1bcf032c9613861572fd4bee8576e85ea43e9e363459b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Face</topic><topic>Generative adversarial networks</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>Quality assessment</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Man, Qiaoyue</creatorcontrib><creatorcontrib>Cho, Young-Im</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Man, Qiaoyue</au><au>Cho, Young-Im</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Face Region Occlusion Repair Based on T-GANs</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>12</volume><issue>10</issue><spage>2162</spage><pages>2162-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In the image restoration task, the generative adversarial network (GAN) demonstrates excellent performance. However, there remain significant challenges concerning the task of generative face region inpainting. Traditional model approaches are ineffective in maintaining global consistency among facial components and recovering fine facial details. To address this challenge, this study proposes a facial restoration generation network combined a transformer module and GAN to accurately detect the missing feature parts of the face and perform effective and fine-grained restoration generation. We validate the proposed model using different image quality evaluation methods and several open-source face datasets and experimentally demonstrate that our model outperforms other current state-of-the-art network models in terms of generated image quality and the coherent naturalness of facial features in face image restoration generation tasks.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12102162</doi><orcidid>https://orcid.org/0000-0003-0184-7599</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-05, Vol.12 (10), p.2162 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2819444020 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Deep learning Face Generative adversarial networks Image processing Image quality Image restoration Methods Neural networks Occlusion Quality assessment Semantics |
title | Efficient Face Region Occlusion Repair Based on T-GANs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Face%20Region%20Occlusion%20Repair%20Based%20on%20T-GANs&rft.jtitle=Electronics%20(Basel)&rft.au=Man,%20Qiaoyue&rft.date=2023-05-01&rft.volume=12&rft.issue=10&rft.spage=2162&rft.pages=2162-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12102162&rft_dat=%3Cgale_proqu%3EA750889448%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819444020&rft_id=info:pmid/&rft_galeid=A750889448&rfr_iscdi=true |