Resonance Energy Transfer Between Molecular Rotors SYBR Green Intercalated in DNA

The dependences of the fluorescence intensity and anisotropy of molecular rotors SYBR Green (SG) and double-stranded DNA with 10, 20, and 100 base pairs on their relative concentrations in solutions and on the viscosity of the medium were studied. It was shown that an increase in the fluorescence in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied spectroscopy 2023-05, Vol.90 (2), p.299-307
Hauptverfasser: Tikhomirov, S. A., Blokhin, A. P., Povedailo, V. A., Pilipovich, A. S., Yakovlev, D. L., Fan, F., Shmanai, V. V., Minh, P. H., Duong, P. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 2
container_start_page 299
container_title Journal of applied spectroscopy
container_volume 90
creator Tikhomirov, S. A.
Blokhin, A. P.
Povedailo, V. A.
Pilipovich, A. S.
Yakovlev, D. L.
Fan, F.
Shmanai, V. V.
Minh, P. H.
Duong, P. V.
description The dependences of the fluorescence intensity and anisotropy of molecular rotors SYBR Green (SG) and double-stranded DNA with 10, 20, and 100 base pairs on their relative concentrations in solutions and on the viscosity of the medium were studied. It was shown that an increase in the fluorescence intensity with an increase in the SG concentration and a subsequent leveling off at a constant value was associated with an initial increase in the number of SG molecules intercalated in DNA and further saturation with the formation of nonfluorescent states. A generalized model that takes into account both internal rotations and rotational diffusion of the molecular complex as a whole was developed to explain the sharp drop in fluorescence anisotropy due to Forster intramolecular energy transfer between DNA-bound SG molecules. The proposed model made it possible to calculate universally the obtained experimental dependences of the fluorescence anisotropy on the viscosity of the medium at various dye/DNA ratios and to estimate the Forster energy transfer rates.
doi_str_mv 10.1007/s10812-023-01536-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2819417158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758447056</galeid><sourcerecordid>A758447056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-852fb57e531430624e901b5da3d7aff7bfa0171e9a3c364b0782aaa40eabfd573</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEkvLH-BkiROHtOOvODluS2lXKkVsy4GTNUnGq1SpXWyvaP99XYKEekFzsDR-Hs9Yb1V94HDEAcxx4tByUYOQNXAtm1q9qlZcG1m3jTKvqxWA4HUH0ryt3qV0CwBdK2BVfd9SCh79QOzMU9w9spuIPjmK7ITybyLPvoaZhv2MkW1DDjGx658nW3Yen-82PlMccMZMI5s8-3y1PqzeOJwTvf97HlQ_vpzdnF7Ul9_ON6fry3qQSua61cL12pCWXElohKIOeK9HlKNB50zvELjh1KEcZKN6MK1ARAWEvRvLzw6qj8u79zH82lPK9jbsoy8jrWh5p4qs20IdLdQOZ7KTdyFHHEqNdDcNwZObSn9tdKuUAd0U4dMLoTCZHvIO9ynZzfX2JSsWdoghpUjO3sfpDuOj5WCfc7FLLrbkYv_kYlWR5CKlAvsdxX97_8d6AsGxjeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819417158</pqid></control><display><type>article</type><title>Resonance Energy Transfer Between Molecular Rotors SYBR Green Intercalated in DNA</title><source>SpringerNature Journals</source><creator>Tikhomirov, S. A. ; Blokhin, A. P. ; Povedailo, V. A. ; Pilipovich, A. S. ; Yakovlev, D. L. ; Fan, F. ; Shmanai, V. V. ; Minh, P. H. ; Duong, P. V.</creator><creatorcontrib>Tikhomirov, S. A. ; Blokhin, A. P. ; Povedailo, V. A. ; Pilipovich, A. S. ; Yakovlev, D. L. ; Fan, F. ; Shmanai, V. V. ; Minh, P. H. ; Duong, P. V.</creatorcontrib><description>The dependences of the fluorescence intensity and anisotropy of molecular rotors SYBR Green (SG) and double-stranded DNA with 10, 20, and 100 base pairs on their relative concentrations in solutions and on the viscosity of the medium were studied. It was shown that an increase in the fluorescence intensity with an increase in the SG concentration and a subsequent leveling off at a constant value was associated with an initial increase in the number of SG molecules intercalated in DNA and further saturation with the formation of nonfluorescent states. A generalized model that takes into account both internal rotations and rotational diffusion of the molecular complex as a whole was developed to explain the sharp drop in fluorescence anisotropy due to Forster intramolecular energy transfer between DNA-bound SG molecules. The proposed model made it possible to calculate universally the obtained experimental dependences of the fluorescence anisotropy on the viscosity of the medium at various dye/DNA ratios and to estimate the Forster energy transfer rates.</description><identifier>ISSN: 0021-9037</identifier><identifier>EISSN: 1573-8647</identifier><identifier>DOI: 10.1007/s10812-023-01536-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Anisotropy ; Atomic/Molecular Structure and Spectra ; DNA ; Energy transfer ; Fluorescence ; Physics ; Physics and Astronomy ; Rotors ; Viscosity</subject><ispartof>Journal of applied spectroscopy, 2023-05, Vol.90 (2), p.299-307</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-852fb57e531430624e901b5da3d7aff7bfa0171e9a3c364b0782aaa40eabfd573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10812-023-01536-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10812-023-01536-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Tikhomirov, S. A.</creatorcontrib><creatorcontrib>Blokhin, A. P.</creatorcontrib><creatorcontrib>Povedailo, V. A.</creatorcontrib><creatorcontrib>Pilipovich, A. S.</creatorcontrib><creatorcontrib>Yakovlev, D. L.</creatorcontrib><creatorcontrib>Fan, F.</creatorcontrib><creatorcontrib>Shmanai, V. V.</creatorcontrib><creatorcontrib>Minh, P. H.</creatorcontrib><creatorcontrib>Duong, P. V.</creatorcontrib><title>Resonance Energy Transfer Between Molecular Rotors SYBR Green Intercalated in DNA</title><title>Journal of applied spectroscopy</title><addtitle>J Appl Spectrosc</addtitle><description>The dependences of the fluorescence intensity and anisotropy of molecular rotors SYBR Green (SG) and double-stranded DNA with 10, 20, and 100 base pairs on their relative concentrations in solutions and on the viscosity of the medium were studied. It was shown that an increase in the fluorescence intensity with an increase in the SG concentration and a subsequent leveling off at a constant value was associated with an initial increase in the number of SG molecules intercalated in DNA and further saturation with the formation of nonfluorescent states. A generalized model that takes into account both internal rotations and rotational diffusion of the molecular complex as a whole was developed to explain the sharp drop in fluorescence anisotropy due to Forster intramolecular energy transfer between DNA-bound SG molecules. The proposed model made it possible to calculate universally the obtained experimental dependences of the fluorescence anisotropy on the viscosity of the medium at various dye/DNA ratios and to estimate the Forster energy transfer rates.</description><subject>Analytical Chemistry</subject><subject>Anisotropy</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>DNA</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rotors</subject><subject>Viscosity</subject><issn>0021-9037</issn><issn>1573-8647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEEkvLH-BkiROHtOOvODluS2lXKkVsy4GTNUnGq1SpXWyvaP99XYKEekFzsDR-Hs9Yb1V94HDEAcxx4tByUYOQNXAtm1q9qlZcG1m3jTKvqxWA4HUH0ryt3qV0CwBdK2BVfd9SCh79QOzMU9w9spuIPjmK7ITybyLPvoaZhv2MkW1DDjGx658nW3Yen-82PlMccMZMI5s8-3y1PqzeOJwTvf97HlQ_vpzdnF7Ul9_ON6fry3qQSua61cL12pCWXElohKIOeK9HlKNB50zvELjh1KEcZKN6MK1ARAWEvRvLzw6qj8u79zH82lPK9jbsoy8jrWh5p4qs20IdLdQOZ7KTdyFHHEqNdDcNwZObSn9tdKuUAd0U4dMLoTCZHvIO9ynZzfX2JSsWdoghpUjO3sfpDuOj5WCfc7FLLrbkYv_kYlWR5CKlAvsdxX97_8d6AsGxjeU</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Tikhomirov, S. A.</creator><creator>Blokhin, A. P.</creator><creator>Povedailo, V. A.</creator><creator>Pilipovich, A. S.</creator><creator>Yakovlev, D. L.</creator><creator>Fan, F.</creator><creator>Shmanai, V. V.</creator><creator>Minh, P. H.</creator><creator>Duong, P. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20230501</creationdate><title>Resonance Energy Transfer Between Molecular Rotors SYBR Green Intercalated in DNA</title><author>Tikhomirov, S. A. ; Blokhin, A. P. ; Povedailo, V. A. ; Pilipovich, A. S. ; Yakovlev, D. L. ; Fan, F. ; Shmanai, V. V. ; Minh, P. H. ; Duong, P. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-852fb57e531430624e901b5da3d7aff7bfa0171e9a3c364b0782aaa40eabfd573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical Chemistry</topic><topic>Anisotropy</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>DNA</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rotors</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tikhomirov, S. A.</creatorcontrib><creatorcontrib>Blokhin, A. P.</creatorcontrib><creatorcontrib>Povedailo, V. A.</creatorcontrib><creatorcontrib>Pilipovich, A. S.</creatorcontrib><creatorcontrib>Yakovlev, D. L.</creatorcontrib><creatorcontrib>Fan, F.</creatorcontrib><creatorcontrib>Shmanai, V. V.</creatorcontrib><creatorcontrib>Minh, P. H.</creatorcontrib><creatorcontrib>Duong, P. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of applied spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tikhomirov, S. A.</au><au>Blokhin, A. P.</au><au>Povedailo, V. A.</au><au>Pilipovich, A. S.</au><au>Yakovlev, D. L.</au><au>Fan, F.</au><au>Shmanai, V. V.</au><au>Minh, P. H.</au><au>Duong, P. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonance Energy Transfer Between Molecular Rotors SYBR Green Intercalated in DNA</atitle><jtitle>Journal of applied spectroscopy</jtitle><stitle>J Appl Spectrosc</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>90</volume><issue>2</issue><spage>299</spage><epage>307</epage><pages>299-307</pages><issn>0021-9037</issn><eissn>1573-8647</eissn><abstract>The dependences of the fluorescence intensity and anisotropy of molecular rotors SYBR Green (SG) and double-stranded DNA with 10, 20, and 100 base pairs on their relative concentrations in solutions and on the viscosity of the medium were studied. It was shown that an increase in the fluorescence intensity with an increase in the SG concentration and a subsequent leveling off at a constant value was associated with an initial increase in the number of SG molecules intercalated in DNA and further saturation with the formation of nonfluorescent states. A generalized model that takes into account both internal rotations and rotational diffusion of the molecular complex as a whole was developed to explain the sharp drop in fluorescence anisotropy due to Forster intramolecular energy transfer between DNA-bound SG molecules. The proposed model made it possible to calculate universally the obtained experimental dependences of the fluorescence anisotropy on the viscosity of the medium at various dye/DNA ratios and to estimate the Forster energy transfer rates.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10812-023-01536-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9037
ispartof Journal of applied spectroscopy, 2023-05, Vol.90 (2), p.299-307
issn 0021-9037
1573-8647
language eng
recordid cdi_proquest_journals_2819417158
source SpringerNature Journals
subjects Analytical Chemistry
Anisotropy
Atomic/Molecular Structure and Spectra
DNA
Energy transfer
Fluorescence
Physics
Physics and Astronomy
Rotors
Viscosity
title Resonance Energy Transfer Between Molecular Rotors SYBR Green Intercalated in DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonance%20Energy%20Transfer%20Between%20Molecular%20Rotors%20SYBR%20Green%20Intercalated%20in%20DNA&rft.jtitle=Journal%20of%20applied%20spectroscopy&rft.au=Tikhomirov,%20S.%20A.&rft.date=2023-05-01&rft.volume=90&rft.issue=2&rft.spage=299&rft.epage=307&rft.pages=299-307&rft.issn=0021-9037&rft.eissn=1573-8647&rft_id=info:doi/10.1007/s10812-023-01536-4&rft_dat=%3Cgale_proqu%3EA758447056%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819417158&rft_id=info:pmid/&rft_galeid=A758447056&rfr_iscdi=true