Existence of Front–Back-Pulse Solutions of a Three-Species Lotka–Volterra Competition–Diffusion System

The existence of nonmonotone traveling wave solutions of the three-species Lotka–Volterra competition diffusion system under strong competition is established. A traveling wave solution can be considered as a heteroclinic orbit of a vector field in R 6 . Under suitable assumptions on parameters of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2023-06, Vol.35 (2), p.1273-1308
Hauptverfasser: Chang, Chueh-Hsin, Chen, Chiun-Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1308
container_issue 2
container_start_page 1273
container_title Journal of dynamics and differential equations
container_volume 35
creator Chang, Chueh-Hsin
Chen, Chiun-Chuan
description The existence of nonmonotone traveling wave solutions of the three-species Lotka–Volterra competition diffusion system under strong competition is established. A traveling wave solution can be considered as a heteroclinic orbit of a vector field in R 6 . Under suitable assumptions on parameters of the equations, we apply a bifurcation theory of heteroclinic orbits to show that a three-species traveling wave can bifurcate from two two-species waves which connect to a common equilibrium. The three components of the three-species wave obtained are positive and have the profiles that one is a front, one is a back, and the third component is a pulse between the previous two with a long middle part close to a constant. As applications of our result, we find several explicit regions of parameters of the equations where the bifurcation of three-species traveling waves occur.
doi_str_mv 10.1007/s10884-021-10090-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2819415187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819415187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c5b4585266c3c942822ab0cb02d038d199906f5d18d10c16f9edb0af3e44bbc13</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuC6-hNmrbJUkdHhQGFGd2GNE2189PUJAVn5zv4hj6JGSu4c3XPTb5zLhyETgmcE4DiwhPgnGGgBMddAM730IhkBcWCUrofNTDABRXsEB15v4QI8VSM0PrmvfHBtNoktk6mzrbh6-PzSukVfuzX3iRzu-5DY1u_-1fJ4tUZg-ed0Y3xycyGlYr8s10H45xKJnbTmdDsDPH5uqnr3kedzLfxyOYYHdQqhp78zjF6mt4sJnd49nB7P7mcYZ0SEbDOSpbxjOa5TrVglFOqStAl0ApSXhEhBOR1VpGoQZO8FqYqQdWpYawsNUnH6GzI7Zx9640Pcml718aTknIiGMkILyJFB0o7670ztexcs1FuKwnIXatyaFXGVuVPqzKPpnQw-Qi3L8b9Rf_j-gZ25H4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819415187</pqid></control><display><type>article</type><title>Existence of Front–Back-Pulse Solutions of a Three-Species Lotka–Volterra Competition–Diffusion System</title><source>Springer Nature - Complete Springer Journals</source><creator>Chang, Chueh-Hsin ; Chen, Chiun-Chuan</creator><creatorcontrib>Chang, Chueh-Hsin ; Chen, Chiun-Chuan</creatorcontrib><description>The existence of nonmonotone traveling wave solutions of the three-species Lotka–Volterra competition diffusion system under strong competition is established. A traveling wave solution can be considered as a heteroclinic orbit of a vector field in R 6 . Under suitable assumptions on parameters of the equations, we apply a bifurcation theory of heteroclinic orbits to show that a three-species traveling wave can bifurcate from two two-species waves which connect to a common equilibrium. The three components of the three-species wave obtained are positive and have the profiles that one is a front, one is a back, and the third component is a pulse between the previous two with a long middle part close to a constant. As applications of our result, we find several explicit regions of parameters of the equations where the bifurcation of three-species traveling waves occur.</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-021-10090-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Bifurcation theory ; Competition ; Fields (mathematics) ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Parameters ; Partial Differential Equations ; Species diffusion ; Traveling waves</subject><ispartof>Journal of dynamics and differential equations, 2023-06, Vol.35 (2), p.1273-1308</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c5b4585266c3c942822ab0cb02d038d199906f5d18d10c16f9edb0af3e44bbc13</citedby><cites>FETCH-LOGICAL-c319t-c5b4585266c3c942822ab0cb02d038d199906f5d18d10c16f9edb0af3e44bbc13</cites><orcidid>0000-0002-0613-4400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10884-021-10090-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10884-021-10090-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chang, Chueh-Hsin</creatorcontrib><creatorcontrib>Chen, Chiun-Chuan</creatorcontrib><title>Existence of Front–Back-Pulse Solutions of a Three-Species Lotka–Volterra Competition–Diffusion System</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>The existence of nonmonotone traveling wave solutions of the three-species Lotka–Volterra competition diffusion system under strong competition is established. A traveling wave solution can be considered as a heteroclinic orbit of a vector field in R 6 . Under suitable assumptions on parameters of the equations, we apply a bifurcation theory of heteroclinic orbits to show that a three-species traveling wave can bifurcate from two two-species waves which connect to a common equilibrium. The three components of the three-species wave obtained are positive and have the profiles that one is a front, one is a back, and the third component is a pulse between the previous two with a long middle part close to a constant. As applications of our result, we find several explicit regions of parameters of the equations where the bifurcation of three-species traveling waves occur.</description><subject>Applications of Mathematics</subject><subject>Bifurcation theory</subject><subject>Competition</subject><subject>Fields (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Parameters</subject><subject>Partial Differential Equations</subject><subject>Species diffusion</subject><subject>Traveling waves</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKuC6-hNmrbJUkdHhQGFGd2GNE2189PUJAVn5zv4hj6JGSu4c3XPTb5zLhyETgmcE4DiwhPgnGGgBMddAM730IhkBcWCUrofNTDABRXsEB15v4QI8VSM0PrmvfHBtNoktk6mzrbh6-PzSukVfuzX3iRzu-5DY1u_-1fJ4tUZg-ed0Y3xycyGlYr8s10H45xKJnbTmdDsDPH5uqnr3kedzLfxyOYYHdQqhp78zjF6mt4sJnd49nB7P7mcYZ0SEbDOSpbxjOa5TrVglFOqStAl0ApSXhEhBOR1VpGoQZO8FqYqQdWpYawsNUnH6GzI7Zx9640Pcml718aTknIiGMkILyJFB0o7670ztexcs1FuKwnIXatyaFXGVuVPqzKPpnQw-Qi3L8b9Rf_j-gZ25H4U</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Chang, Chueh-Hsin</creator><creator>Chen, Chiun-Chuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0613-4400</orcidid></search><sort><creationdate>20230601</creationdate><title>Existence of Front–Back-Pulse Solutions of a Three-Species Lotka–Volterra Competition–Diffusion System</title><author>Chang, Chueh-Hsin ; Chen, Chiun-Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c5b4585266c3c942822ab0cb02d038d199906f5d18d10c16f9edb0af3e44bbc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Bifurcation theory</topic><topic>Competition</topic><topic>Fields (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Parameters</topic><topic>Partial Differential Equations</topic><topic>Species diffusion</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chueh-Hsin</creatorcontrib><creatorcontrib>Chen, Chiun-Chuan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chueh-Hsin</au><au>Chen, Chiun-Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Front–Back-Pulse Solutions of a Three-Species Lotka–Volterra Competition–Diffusion System</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>2</issue><spage>1273</spage><epage>1308</epage><pages>1273-1308</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>The existence of nonmonotone traveling wave solutions of the three-species Lotka–Volterra competition diffusion system under strong competition is established. A traveling wave solution can be considered as a heteroclinic orbit of a vector field in R 6 . Under suitable assumptions on parameters of the equations, we apply a bifurcation theory of heteroclinic orbits to show that a three-species traveling wave can bifurcate from two two-species waves which connect to a common equilibrium. The three components of the three-species wave obtained are positive and have the profiles that one is a front, one is a back, and the third component is a pulse between the previous two with a long middle part close to a constant. As applications of our result, we find several explicit regions of parameters of the equations where the bifurcation of three-species traveling waves occur.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-021-10090-6</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-0613-4400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-7294
ispartof Journal of dynamics and differential equations, 2023-06, Vol.35 (2), p.1273-1308
issn 1040-7294
1572-9222
language eng
recordid cdi_proquest_journals_2819415187
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Bifurcation theory
Competition
Fields (mathematics)
Mathematical analysis
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Parameters
Partial Differential Equations
Species diffusion
Traveling waves
title Existence of Front–Back-Pulse Solutions of a Three-Species Lotka–Volterra Competition–Diffusion System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Front%E2%80%93Back-Pulse%20Solutions%20of%20a%20Three-Species%20Lotka%E2%80%93Volterra%20Competition%E2%80%93Diffusion%20System&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=Chang,%20Chueh-Hsin&rft.date=2023-06-01&rft.volume=35&rft.issue=2&rft.spage=1273&rft.epage=1308&rft.pages=1273-1308&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-021-10090-6&rft_dat=%3Cproquest_cross%3E2819415187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819415187&rft_id=info:pmid/&rfr_iscdi=true