Existence of Front–Back-Pulse Solutions of a Three-Species Lotka–Volterra Competition–Diffusion System
The existence of nonmonotone traveling wave solutions of the three-species Lotka–Volterra competition diffusion system under strong competition is established. A traveling wave solution can be considered as a heteroclinic orbit of a vector field in R 6 . Under suitable assumptions on parameters of t...
Gespeichert in:
Veröffentlicht in: | Journal of dynamics and differential equations 2023-06, Vol.35 (2), p.1273-1308 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1308 |
---|---|
container_issue | 2 |
container_start_page | 1273 |
container_title | Journal of dynamics and differential equations |
container_volume | 35 |
creator | Chang, Chueh-Hsin Chen, Chiun-Chuan |
description | The existence of nonmonotone traveling wave solutions of the three-species Lotka–Volterra competition diffusion system under strong competition is established. A traveling wave solution can be considered as a heteroclinic orbit of a vector field in
R
6
. Under suitable assumptions on parameters of the equations, we apply a bifurcation theory of heteroclinic orbits to show that a three-species traveling wave can bifurcate from two two-species waves which connect to a common equilibrium. The three components of the three-species wave obtained are positive and have the profiles that one is a front, one is a back, and the third component is a pulse between the previous two with a long middle part close to a constant. As applications of our result, we find several explicit regions of parameters of the equations where the bifurcation of three-species traveling waves occur. |
doi_str_mv | 10.1007/s10884-021-10090-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2819415187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819415187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c5b4585266c3c942822ab0cb02d038d199906f5d18d10c16f9edb0af3e44bbc13</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuC6-hNmrbJUkdHhQGFGd2GNE2189PUJAVn5zv4hj6JGSu4c3XPTb5zLhyETgmcE4DiwhPgnGGgBMddAM730IhkBcWCUrofNTDABRXsEB15v4QI8VSM0PrmvfHBtNoktk6mzrbh6-PzSukVfuzX3iRzu-5DY1u_-1fJ4tUZg-ed0Y3xycyGlYr8s10H45xKJnbTmdDsDPH5uqnr3kedzLfxyOYYHdQqhp78zjF6mt4sJnd49nB7P7mcYZ0SEbDOSpbxjOa5TrVglFOqStAl0ApSXhEhBOR1VpGoQZO8FqYqQdWpYawsNUnH6GzI7Zx9640Pcml718aTknIiGMkILyJFB0o7670ztexcs1FuKwnIXatyaFXGVuVPqzKPpnQw-Qi3L8b9Rf_j-gZ25H4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819415187</pqid></control><display><type>article</type><title>Existence of Front–Back-Pulse Solutions of a Three-Species Lotka–Volterra Competition–Diffusion System</title><source>Springer Nature - Complete Springer Journals</source><creator>Chang, Chueh-Hsin ; Chen, Chiun-Chuan</creator><creatorcontrib>Chang, Chueh-Hsin ; Chen, Chiun-Chuan</creatorcontrib><description>The existence of nonmonotone traveling wave solutions of the three-species Lotka–Volterra competition diffusion system under strong competition is established. A traveling wave solution can be considered as a heteroclinic orbit of a vector field in
R
6
. Under suitable assumptions on parameters of the equations, we apply a bifurcation theory of heteroclinic orbits to show that a three-species traveling wave can bifurcate from two two-species waves which connect to a common equilibrium. The three components of the three-species wave obtained are positive and have the profiles that one is a front, one is a back, and the third component is a pulse between the previous two with a long middle part close to a constant. As applications of our result, we find several explicit regions of parameters of the equations where the bifurcation of three-species traveling waves occur.</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-021-10090-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Bifurcation theory ; Competition ; Fields (mathematics) ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Parameters ; Partial Differential Equations ; Species diffusion ; Traveling waves</subject><ispartof>Journal of dynamics and differential equations, 2023-06, Vol.35 (2), p.1273-1308</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c5b4585266c3c942822ab0cb02d038d199906f5d18d10c16f9edb0af3e44bbc13</citedby><cites>FETCH-LOGICAL-c319t-c5b4585266c3c942822ab0cb02d038d199906f5d18d10c16f9edb0af3e44bbc13</cites><orcidid>0000-0002-0613-4400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10884-021-10090-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10884-021-10090-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chang, Chueh-Hsin</creatorcontrib><creatorcontrib>Chen, Chiun-Chuan</creatorcontrib><title>Existence of Front–Back-Pulse Solutions of a Three-Species Lotka–Volterra Competition–Diffusion System</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>The existence of nonmonotone traveling wave solutions of the three-species Lotka–Volterra competition diffusion system under strong competition is established. A traveling wave solution can be considered as a heteroclinic orbit of a vector field in
R
6
. Under suitable assumptions on parameters of the equations, we apply a bifurcation theory of heteroclinic orbits to show that a three-species traveling wave can bifurcate from two two-species waves which connect to a common equilibrium. The three components of the three-species wave obtained are positive and have the profiles that one is a front, one is a back, and the third component is a pulse between the previous two with a long middle part close to a constant. As applications of our result, we find several explicit regions of parameters of the equations where the bifurcation of three-species traveling waves occur.</description><subject>Applications of Mathematics</subject><subject>Bifurcation theory</subject><subject>Competition</subject><subject>Fields (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Parameters</subject><subject>Partial Differential Equations</subject><subject>Species diffusion</subject><subject>Traveling waves</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKuC6-hNmrbJUkdHhQGFGd2GNE2189PUJAVn5zv4hj6JGSu4c3XPTb5zLhyETgmcE4DiwhPgnGGgBMddAM730IhkBcWCUrofNTDABRXsEB15v4QI8VSM0PrmvfHBtNoktk6mzrbh6-PzSukVfuzX3iRzu-5DY1u_-1fJ4tUZg-ed0Y3xycyGlYr8s10H45xKJnbTmdDsDPH5uqnr3kedzLfxyOYYHdQqhp78zjF6mt4sJnd49nB7P7mcYZ0SEbDOSpbxjOa5TrVglFOqStAl0ApSXhEhBOR1VpGoQZO8FqYqQdWpYawsNUnH6GzI7Zx9640Pcml718aTknIiGMkILyJFB0o7670ztexcs1FuKwnIXatyaFXGVuVPqzKPpnQw-Qi3L8b9Rf_j-gZ25H4U</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Chang, Chueh-Hsin</creator><creator>Chen, Chiun-Chuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0613-4400</orcidid></search><sort><creationdate>20230601</creationdate><title>Existence of Front–Back-Pulse Solutions of a Three-Species Lotka–Volterra Competition–Diffusion System</title><author>Chang, Chueh-Hsin ; Chen, Chiun-Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c5b4585266c3c942822ab0cb02d038d199906f5d18d10c16f9edb0af3e44bbc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Bifurcation theory</topic><topic>Competition</topic><topic>Fields (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Parameters</topic><topic>Partial Differential Equations</topic><topic>Species diffusion</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chueh-Hsin</creatorcontrib><creatorcontrib>Chen, Chiun-Chuan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chueh-Hsin</au><au>Chen, Chiun-Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Front–Back-Pulse Solutions of a Three-Species Lotka–Volterra Competition–Diffusion System</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>2</issue><spage>1273</spage><epage>1308</epage><pages>1273-1308</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>The existence of nonmonotone traveling wave solutions of the three-species Lotka–Volterra competition diffusion system under strong competition is established. A traveling wave solution can be considered as a heteroclinic orbit of a vector field in
R
6
. Under suitable assumptions on parameters of the equations, we apply a bifurcation theory of heteroclinic orbits to show that a three-species traveling wave can bifurcate from two two-species waves which connect to a common equilibrium. The three components of the three-species wave obtained are positive and have the profiles that one is a front, one is a back, and the third component is a pulse between the previous two with a long middle part close to a constant. As applications of our result, we find several explicit regions of parameters of the equations where the bifurcation of three-species traveling waves occur.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-021-10090-6</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-0613-4400</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7294 |
ispartof | Journal of dynamics and differential equations, 2023-06, Vol.35 (2), p.1273-1308 |
issn | 1040-7294 1572-9222 |
language | eng |
recordid | cdi_proquest_journals_2819415187 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Bifurcation theory Competition Fields (mathematics) Mathematical analysis Mathematics Mathematics and Statistics Ordinary Differential Equations Parameters Partial Differential Equations Species diffusion Traveling waves |
title | Existence of Front–Back-Pulse Solutions of a Three-Species Lotka–Volterra Competition–Diffusion System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Front%E2%80%93Back-Pulse%20Solutions%20of%20a%20Three-Species%20Lotka%E2%80%93Volterra%20Competition%E2%80%93Diffusion%20System&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=Chang,%20Chueh-Hsin&rft.date=2023-06-01&rft.volume=35&rft.issue=2&rft.spage=1273&rft.epage=1308&rft.pages=1273-1308&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-021-10090-6&rft_dat=%3Cproquest_cross%3E2819415187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819415187&rft_id=info:pmid/&rfr_iscdi=true |