Importance Sampling-Based Estimate of Origin Error in NET-VISA
We introduce a Monte Carlo procedure for estimating the posterior location uncertainty of events produced by NET-VISA, a Physics-Based Generative Model of global scale seismology. The procedure produces a parametric estimate (confidence ellipse) of the uncertainty in location as well as the joint un...
Gespeichert in:
Veröffentlicht in: | Pure and applied geophysics 2023-04, Vol.180 (4), p.1253-1272 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1272 |
---|---|
container_issue | 4 |
container_start_page | 1253 |
container_title | Pure and applied geophysics |
container_volume | 180 |
creator | Arora, Geeta Arora, Nimar Le Bras, Ronan Kushida, Noriyuki |
description | We introduce a Monte Carlo procedure for estimating the posterior location uncertainty of events produced by NET-VISA, a Physics-Based Generative Model of global scale seismology. The procedure produces a parametric estimate (confidence ellipse) of the uncertainty in location as well as the joint uncertainty in depth and time. This takes into account the uncertainty in the measurements of all of the seismic, hydroacoustic, and infrasound phases that are detected as well as those that are not detected at operational stations including the possibility that the detections were, in fact, noise. The resulting parameteric estimates are shown to be more accurate than some of the existing deployed algorithms in evaluations on a ground truth seismic dataset. An improvement is also proposed to the NET-VISA model training to take into account the inaccuracy in the current human-labeled training data. This extra uncertainty that is injected into the model leads to even better uncertainty quantification. We also demonstrate on a number of illustrative examples that NET-VISA’s generative model leads to posterior uncertainty contours that are not accurately captured by confidence ellipses. |
doi_str_mv | 10.1007/s00024-022-03201-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2819138834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819138834</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-fe9749b556f0b13683a0a50d0a61d8c2f9e27e001bcf2019e3dfcc6ed2b028013</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqHwBzhF4mxYvxLnglSqFCpV9NDC1XISO0rVPLBTqfx7DEHixmn3MLM78yF0S-CeAKQPHgAox0ApBkaB4NMZigingDPCknMUATCGuRDsEl15vwcgaSqyCD2u2qF3o-5KE291OxyarsZP2psqzv3YtHo0cW_jjWvqpotz53oXh-U13-H31XZ-jS6sPnhz8ztn6G2Z7xYveL15Xi3ma6wZpyO2Jkt5VgiRWChCIMk0aAEV6IRUsqQ2MzQ1IVRR2pA-M6yyZZmYihZAJRA2Q3fT3cH1H0fjR7Xvj64LLxWVJHSUkvGgopOqdL33zlg1uFDBfSoC6puTmjipwEn9cFKnYGKTyQdxVxv3d_of1xeKfGlJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819138834</pqid></control><display><type>article</type><title>Importance Sampling-Based Estimate of Origin Error in NET-VISA</title><source>SpringerLink Journals</source><creator>Arora, Geeta ; Arora, Nimar ; Le Bras, Ronan ; Kushida, Noriyuki</creator><creatorcontrib>Arora, Geeta ; Arora, Nimar ; Le Bras, Ronan ; Kushida, Noriyuki</creatorcontrib><description>We introduce a Monte Carlo procedure for estimating the posterior location uncertainty of events produced by NET-VISA, a Physics-Based Generative Model of global scale seismology. The procedure produces a parametric estimate (confidence ellipse) of the uncertainty in location as well as the joint uncertainty in depth and time. This takes into account the uncertainty in the measurements of all of the seismic, hydroacoustic, and infrasound phases that are detected as well as those that are not detected at operational stations including the possibility that the detections were, in fact, noise. The resulting parameteric estimates are shown to be more accurate than some of the existing deployed algorithms in evaluations on a ground truth seismic dataset. An improvement is also proposed to the NET-VISA model training to take into account the inaccuracy in the current human-labeled training data. This extra uncertainty that is injected into the model leads to even better uncertainty quantification. We also demonstrate on a number of illustrative examples that NET-VISA’s generative model leads to posterior uncertainty contours that are not accurately captured by confidence ellipses.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-022-03201-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Automation ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Importance sampling ; Infrasound ; Modelling ; Parameter estimation ; Physics ; Procedures ; Random variables ; Seismology ; Software ; Statistical methods ; Training ; Uncertainty</subject><ispartof>Pure and applied geophysics, 2023-04, Vol.180 (4), p.1253-1272</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-fe9749b556f0b13683a0a50d0a61d8c2f9e27e001bcf2019e3dfcc6ed2b028013</citedby><cites>FETCH-LOGICAL-a342t-fe9749b556f0b13683a0a50d0a61d8c2f9e27e001bcf2019e3dfcc6ed2b028013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-022-03201-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-022-03201-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Arora, Geeta</creatorcontrib><creatorcontrib>Arora, Nimar</creatorcontrib><creatorcontrib>Le Bras, Ronan</creatorcontrib><creatorcontrib>Kushida, Noriyuki</creatorcontrib><title>Importance Sampling-Based Estimate of Origin Error in NET-VISA</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>We introduce a Monte Carlo procedure for estimating the posterior location uncertainty of events produced by NET-VISA, a Physics-Based Generative Model of global scale seismology. The procedure produces a parametric estimate (confidence ellipse) of the uncertainty in location as well as the joint uncertainty in depth and time. This takes into account the uncertainty in the measurements of all of the seismic, hydroacoustic, and infrasound phases that are detected as well as those that are not detected at operational stations including the possibility that the detections were, in fact, noise. The resulting parameteric estimates are shown to be more accurate than some of the existing deployed algorithms in evaluations on a ground truth seismic dataset. An improvement is also proposed to the NET-VISA model training to take into account the inaccuracy in the current human-labeled training data. This extra uncertainty that is injected into the model leads to even better uncertainty quantification. We also demonstrate on a number of illustrative examples that NET-VISA’s generative model leads to posterior uncertainty contours that are not accurately captured by confidence ellipses.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Importance sampling</subject><subject>Infrasound</subject><subject>Modelling</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Procedures</subject><subject>Random variables</subject><subject>Seismology</subject><subject>Software</subject><subject>Statistical methods</subject><subject>Training</subject><subject>Uncertainty</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtPwzAQhC0EEqHwBzhF4mxYvxLnglSqFCpV9NDC1XISO0rVPLBTqfx7DEHixmn3MLM78yF0S-CeAKQPHgAox0ApBkaB4NMZigingDPCknMUATCGuRDsEl15vwcgaSqyCD2u2qF3o-5KE291OxyarsZP2psqzv3YtHo0cW_jjWvqpotz53oXh-U13-H31XZ-jS6sPnhz8ztn6G2Z7xYveL15Xi3ma6wZpyO2Jkt5VgiRWChCIMk0aAEV6IRUsqQ2MzQ1IVRR2pA-M6yyZZmYihZAJRA2Q3fT3cH1H0fjR7Xvj64LLxWVJHSUkvGgopOqdL33zlg1uFDBfSoC6puTmjipwEn9cFKnYGKTyQdxVxv3d_of1xeKfGlJ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Arora, Geeta</creator><creator>Arora, Nimar</creator><creator>Le Bras, Ronan</creator><creator>Kushida, Noriyuki</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20230401</creationdate><title>Importance Sampling-Based Estimate of Origin Error in NET-VISA</title><author>Arora, Geeta ; Arora, Nimar ; Le Bras, Ronan ; Kushida, Noriyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-fe9749b556f0b13683a0a50d0a61d8c2f9e27e001bcf2019e3dfcc6ed2b028013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Importance sampling</topic><topic>Infrasound</topic><topic>Modelling</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Procedures</topic><topic>Random variables</topic><topic>Seismology</topic><topic>Software</topic><topic>Statistical methods</topic><topic>Training</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arora, Geeta</creatorcontrib><creatorcontrib>Arora, Nimar</creatorcontrib><creatorcontrib>Le Bras, Ronan</creatorcontrib><creatorcontrib>Kushida, Noriyuki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arora, Geeta</au><au>Arora, Nimar</au><au>Le Bras, Ronan</au><au>Kushida, Noriyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Importance Sampling-Based Estimate of Origin Error in NET-VISA</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>180</volume><issue>4</issue><spage>1253</spage><epage>1272</epage><pages>1253-1272</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>We introduce a Monte Carlo procedure for estimating the posterior location uncertainty of events produced by NET-VISA, a Physics-Based Generative Model of global scale seismology. The procedure produces a parametric estimate (confidence ellipse) of the uncertainty in location as well as the joint uncertainty in depth and time. This takes into account the uncertainty in the measurements of all of the seismic, hydroacoustic, and infrasound phases that are detected as well as those that are not detected at operational stations including the possibility that the detections were, in fact, noise. The resulting parameteric estimates are shown to be more accurate than some of the existing deployed algorithms in evaluations on a ground truth seismic dataset. An improvement is also proposed to the NET-VISA model training to take into account the inaccuracy in the current human-labeled training data. This extra uncertainty that is injected into the model leads to even better uncertainty quantification. We also demonstrate on a number of illustrative examples that NET-VISA’s generative model leads to posterior uncertainty contours that are not accurately captured by confidence ellipses.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-022-03201-x</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-4553 |
ispartof | Pure and applied geophysics, 2023-04, Vol.180 (4), p.1253-1272 |
issn | 0033-4553 1420-9136 |
language | eng |
recordid | cdi_proquest_journals_2819138834 |
source | SpringerLink Journals |
subjects | Algorithms Automation Earth and Environmental Science Earth Sciences Geophysics/Geodesy Importance sampling Infrasound Modelling Parameter estimation Physics Procedures Random variables Seismology Software Statistical methods Training Uncertainty |
title | Importance Sampling-Based Estimate of Origin Error in NET-VISA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Importance%20Sampling-Based%20Estimate%20of%20Origin%20Error%20in%20NET-VISA&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Arora,%20Geeta&rft.date=2023-04-01&rft.volume=180&rft.issue=4&rft.spage=1253&rft.epage=1272&rft.pages=1253-1272&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-022-03201-x&rft_dat=%3Cproquest_cross%3E2819138834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819138834&rft_id=info:pmid/&rfr_iscdi=true |