I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors
Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic met...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chakrabarty, Tuhin Saakyan, Arkadiy Winn, Olivia Panagopoulou, Artemis Yang, Yue Apidianaki, Marianna Muresan, Smaranda |
description | Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALL\(\cdot\)E 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2819137468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819137468</sourcerecordid><originalsourceid>FETCH-proquest_journals_28191374683</originalsourceid><addsrcrecordid>eNqNjD8LwjAUxIMgWLTf4YFzoU36T9eqKNhJ0bE8aFpbQlLzmsFvbwd1drk7fnfcjHlciCjIY84XzCfqwzDkacaTRHjsfoLL8AKEUo44PIzdwhltKyfVrcMplKaWigB1DbuuaRx1Rn9hYYLCShwl3DpyqH4vtGLzBhVJ_-NLtj7sr8UxGKx5Oklj1Rtn9VRVPI82kcjiNBf_rd5scUAp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819137468</pqid></control><display><type>article</type><title>I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors</title><source>Freely Accessible Journals</source><creator>Chakrabarty, Tuhin ; Saakyan, Arkadiy ; Winn, Olivia ; Panagopoulou, Artemis ; Yang, Yue ; Apidianaki, Marianna ; Muresan, Smaranda</creator><creatorcontrib>Chakrabarty, Tuhin ; Saakyan, Arkadiy ; Winn, Olivia ; Panagopoulou, Artemis ; Yang, Yue ; Apidianaki, Marianna ; Muresan, Smaranda</creatorcontrib><description>Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALL\(\cdot\)E 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Collaboration ; Cooperation ; Datasets ; Human performance ; Large language models ; Linguistics ; Metaphor ; Visual tasks</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chakrabarty, Tuhin</creatorcontrib><creatorcontrib>Saakyan, Arkadiy</creatorcontrib><creatorcontrib>Winn, Olivia</creatorcontrib><creatorcontrib>Panagopoulou, Artemis</creatorcontrib><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Apidianaki, Marianna</creatorcontrib><creatorcontrib>Muresan, Smaranda</creatorcontrib><title>I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors</title><title>arXiv.org</title><description>Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALL\(\cdot\)E 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.</description><subject>Collaboration</subject><subject>Cooperation</subject><subject>Datasets</subject><subject>Human performance</subject><subject>Large language models</subject><subject>Linguistics</subject><subject>Metaphor</subject><subject>Visual tasks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjD8LwjAUxIMgWLTf4YFzoU36T9eqKNhJ0bE8aFpbQlLzmsFvbwd1drk7fnfcjHlciCjIY84XzCfqwzDkacaTRHjsfoLL8AKEUo44PIzdwhltKyfVrcMplKaWigB1DbuuaRx1Rn9hYYLCShwl3DpyqH4vtGLzBhVJ_-NLtj7sr8UxGKx5Oklj1Rtn9VRVPI82kcjiNBf_rd5scUAp</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Chakrabarty, Tuhin</creator><creator>Saakyan, Arkadiy</creator><creator>Winn, Olivia</creator><creator>Panagopoulou, Artemis</creator><creator>Yang, Yue</creator><creator>Apidianaki, Marianna</creator><creator>Muresan, Smaranda</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230714</creationdate><title>I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors</title><author>Chakrabarty, Tuhin ; Saakyan, Arkadiy ; Winn, Olivia ; Panagopoulou, Artemis ; Yang, Yue ; Apidianaki, Marianna ; Muresan, Smaranda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28191374683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Collaboration</topic><topic>Cooperation</topic><topic>Datasets</topic><topic>Human performance</topic><topic>Large language models</topic><topic>Linguistics</topic><topic>Metaphor</topic><topic>Visual tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarty, Tuhin</creatorcontrib><creatorcontrib>Saakyan, Arkadiy</creatorcontrib><creatorcontrib>Winn, Olivia</creatorcontrib><creatorcontrib>Panagopoulou, Artemis</creatorcontrib><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Apidianaki, Marianna</creatorcontrib><creatorcontrib>Muresan, Smaranda</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarty, Tuhin</au><au>Saakyan, Arkadiy</au><au>Winn, Olivia</au><au>Panagopoulou, Artemis</au><au>Yang, Yue</au><au>Apidianaki, Marianna</au><au>Muresan, Smaranda</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors</atitle><jtitle>arXiv.org</jtitle><date>2023-07-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALL\(\cdot\)E 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2819137468 |
source | Freely Accessible Journals |
subjects | Collaboration Cooperation Datasets Human performance Large language models Linguistics Metaphor Visual tasks |
title | I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=I%20Spy%20a%20Metaphor:%20Large%20Language%20Models%20and%20Diffusion%20Models%20Co-Create%20Visual%20Metaphors&rft.jtitle=arXiv.org&rft.au=Chakrabarty,%20Tuhin&rft.date=2023-07-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2819137468%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819137468&rft_id=info:pmid/&rfr_iscdi=true |