I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors

Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Chakrabarty, Tuhin, Saakyan, Arkadiy, Winn, Olivia, Panagopoulou, Artemis, Yang, Yue, Apidianaki, Marianna, Muresan, Smaranda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chakrabarty, Tuhin
Saakyan, Arkadiy
Winn, Olivia
Panagopoulou, Artemis
Yang, Yue
Apidianaki, Marianna
Muresan, Smaranda
description Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALL\(\cdot\)E 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2819137468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819137468</sourcerecordid><originalsourceid>FETCH-proquest_journals_28191374683</originalsourceid><addsrcrecordid>eNqNjD8LwjAUxIMgWLTf4YFzoU36T9eqKNhJ0bE8aFpbQlLzmsFvbwd1drk7fnfcjHlciCjIY84XzCfqwzDkacaTRHjsfoLL8AKEUo44PIzdwhltKyfVrcMplKaWigB1DbuuaRx1Rn9hYYLCShwl3DpyqH4vtGLzBhVJ_-NLtj7sr8UxGKx5Oklj1Rtn9VRVPI82kcjiNBf_rd5scUAp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819137468</pqid></control><display><type>article</type><title>I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors</title><source>Freely Accessible Journals</source><creator>Chakrabarty, Tuhin ; Saakyan, Arkadiy ; Winn, Olivia ; Panagopoulou, Artemis ; Yang, Yue ; Apidianaki, Marianna ; Muresan, Smaranda</creator><creatorcontrib>Chakrabarty, Tuhin ; Saakyan, Arkadiy ; Winn, Olivia ; Panagopoulou, Artemis ; Yang, Yue ; Apidianaki, Marianna ; Muresan, Smaranda</creatorcontrib><description>Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALL\(\cdot\)E 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Collaboration ; Cooperation ; Datasets ; Human performance ; Large language models ; Linguistics ; Metaphor ; Visual tasks</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chakrabarty, Tuhin</creatorcontrib><creatorcontrib>Saakyan, Arkadiy</creatorcontrib><creatorcontrib>Winn, Olivia</creatorcontrib><creatorcontrib>Panagopoulou, Artemis</creatorcontrib><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Apidianaki, Marianna</creatorcontrib><creatorcontrib>Muresan, Smaranda</creatorcontrib><title>I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors</title><title>arXiv.org</title><description>Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALL\(\cdot\)E 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.</description><subject>Collaboration</subject><subject>Cooperation</subject><subject>Datasets</subject><subject>Human performance</subject><subject>Large language models</subject><subject>Linguistics</subject><subject>Metaphor</subject><subject>Visual tasks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjD8LwjAUxIMgWLTf4YFzoU36T9eqKNhJ0bE8aFpbQlLzmsFvbwd1drk7fnfcjHlciCjIY84XzCfqwzDkacaTRHjsfoLL8AKEUo44PIzdwhltKyfVrcMplKaWigB1DbuuaRx1Rn9hYYLCShwl3DpyqH4vtGLzBhVJ_-NLtj7sr8UxGKx5Oklj1Rtn9VRVPI82kcjiNBf_rd5scUAp</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Chakrabarty, Tuhin</creator><creator>Saakyan, Arkadiy</creator><creator>Winn, Olivia</creator><creator>Panagopoulou, Artemis</creator><creator>Yang, Yue</creator><creator>Apidianaki, Marianna</creator><creator>Muresan, Smaranda</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230714</creationdate><title>I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors</title><author>Chakrabarty, Tuhin ; Saakyan, Arkadiy ; Winn, Olivia ; Panagopoulou, Artemis ; Yang, Yue ; Apidianaki, Marianna ; Muresan, Smaranda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28191374683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Collaboration</topic><topic>Cooperation</topic><topic>Datasets</topic><topic>Human performance</topic><topic>Large language models</topic><topic>Linguistics</topic><topic>Metaphor</topic><topic>Visual tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarty, Tuhin</creatorcontrib><creatorcontrib>Saakyan, Arkadiy</creatorcontrib><creatorcontrib>Winn, Olivia</creatorcontrib><creatorcontrib>Panagopoulou, Artemis</creatorcontrib><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Apidianaki, Marianna</creatorcontrib><creatorcontrib>Muresan, Smaranda</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarty, Tuhin</au><au>Saakyan, Arkadiy</au><au>Winn, Olivia</au><au>Panagopoulou, Artemis</au><au>Yang, Yue</au><au>Apidianaki, Marianna</au><au>Muresan, Smaranda</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors</atitle><jtitle>arXiv.org</jtitle><date>2023-07-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALL\(\cdot\)E 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2819137468
source Freely Accessible Journals
subjects Collaboration
Cooperation
Datasets
Human performance
Large language models
Linguistics
Metaphor
Visual tasks
title I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=I%20Spy%20a%20Metaphor:%20Large%20Language%20Models%20and%20Diffusion%20Models%20Co-Create%20Visual%20Metaphors&rft.jtitle=arXiv.org&rft.au=Chakrabarty,%20Tuhin&rft.date=2023-07-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2819137468%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819137468&rft_id=info:pmid/&rfr_iscdi=true