Photoelectron Boundary: The Top of the Dayside Ionosphere at Mars

The interaction between Mars and the solar wind results in different plasma regimes separated by several boundaries, among which the separation between the sheath flow and the ionosphere is complicated. Previous studies have provided different and sometimes opposite findings regarding this region. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Space Physics 2023-05, Vol.128 (5), p.n/a
Hauptverfasser: Xu, Shaosui, Mitchell, David L., McFadden, James P., Fowler, Christopher M., Hanley, Kathleen, Weber, Tristan, Brain, David A., Ma, Yingjuan, DiBraccio, Gina A., Mazelle, Christian, Curry, Shannon M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Journal of Geophysical Research: Space Physics
container_volume 128
creator Xu, Shaosui
Mitchell, David L.
McFadden, James P.
Fowler, Christopher M.
Hanley, Kathleen
Weber, Tristan
Brain, David A.
Ma, Yingjuan
DiBraccio, Gina A.
Mazelle, Christian
Curry, Shannon M.
description The interaction between Mars and the solar wind results in different plasma regimes separated by several boundaries, among which the separation between the sheath flow and the ionosphere is complicated. Previous studies have provided different and sometimes opposite findings regarding this region. In this study, we utilize observations from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission to revisit boundaries within this region and perhaps reconcile some differences. More specifically, we start with the photoelectron boundary (PEB), a topological boundary that separates magnetic field lines having access to the dayside ionosphere (open or closed) from those connected to the solar wind on both ends (draped). We find that large gradients in the planetary ion densiti occur across the PEB and that the dominant ion switches from heavy planetary ions to protons near the PEB, indicating that the PEB falls within the ion composition boundary (ICB). Furthermore, our results show that the PEB is not a pressure balance boundary; rather the magnetic pressure dominates both sides of the PEB. Meanwhile, we find that the PEB is located where the shocked solar wind flow stops penetrating deeper into the ionosphere. These findings suggest the PEB marks the top of the Mars dayside ionosphere and also the interface where the sheath plasma flow deflects around the obstacle going downstream. Key Points Large gradients in planetary ion density occur across the photoelectron boundary (PEB) and the PEB falls within the ion composition boundary The PEB can be considered as the top of the Mars dayside ionosphere The PEB is not a pressure balance boundary but is located where the shocked sheath flow is diverted around the ionosphere
doi_str_mv 10.1029/2023JA031353
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2818759811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818759811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3802-8650d4f2a06b88bd4c4a67c981aa43cfa3f149419d88033a2bc968b88df4e16c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKx78wcEvInVfLVNvNVd3Q9WFFnPIZumtEttatIq--_NUhVPzmVehod53xkAzjG6xoiIG4IIXWWIYhrTIzAiOBGRYIgc_2jK0SmYeL9DoXgY4XgEsufSdtbURnfONvDO9k2u3P4WbkoDN7aFtoBdkDO191Vu4NI21relcQaqDj4q58_ASaFqbybffQxeH-4300W0fpovp9k60sGYRDyJUc4KolCy5XybM81UkmrBsVKM6kLRAjPBsMg5R5QqstUi4QHNC2ZwoukYXA57S1XL1lVvIaa0qpKLbC2rxvcSMZZSgtAHDvDFALfOvvfGd3Jne9eEfJJwzNM4-B6oq4HSznrvTPG7FyN5eKr8-9SA0wH_rGqz_5eVq_lLFqfhcPoFtyJ1Bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818759811</pqid></control><display><type>article</type><title>Photoelectron Boundary: The Top of the Dayside Ionosphere at Mars</title><source>Access via Wiley Online Library</source><creator>Xu, Shaosui ; Mitchell, David L. ; McFadden, James P. ; Fowler, Christopher M. ; Hanley, Kathleen ; Weber, Tristan ; Brain, David A. ; Ma, Yingjuan ; DiBraccio, Gina A. ; Mazelle, Christian ; Curry, Shannon M.</creator><creatorcontrib>Xu, Shaosui ; Mitchell, David L. ; McFadden, James P. ; Fowler, Christopher M. ; Hanley, Kathleen ; Weber, Tristan ; Brain, David A. ; Ma, Yingjuan ; DiBraccio, Gina A. ; Mazelle, Christian ; Curry, Shannon M.</creatorcontrib><description>The interaction between Mars and the solar wind results in different plasma regimes separated by several boundaries, among which the separation between the sheath flow and the ionosphere is complicated. Previous studies have provided different and sometimes opposite findings regarding this region. In this study, we utilize observations from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission to revisit boundaries within this region and perhaps reconcile some differences. More specifically, we start with the photoelectron boundary (PEB), a topological boundary that separates magnetic field lines having access to the dayside ionosphere (open or closed) from those connected to the solar wind on both ends (draped). We find that large gradients in the planetary ion densiti occur across the PEB and that the dominant ion switches from heavy planetary ions to protons near the PEB, indicating that the PEB falls within the ion composition boundary (ICB). Furthermore, our results show that the PEB is not a pressure balance boundary; rather the magnetic pressure dominates both sides of the PEB. Meanwhile, we find that the PEB is located where the shocked solar wind flow stops penetrating deeper into the ionosphere. These findings suggest the PEB marks the top of the Mars dayside ionosphere and also the interface where the sheath plasma flow deflects around the obstacle going downstream. Key Points Large gradients in planetary ion density occur across the photoelectron boundary (PEB) and the PEB falls within the ion composition boundary The PEB can be considered as the top of the Mars dayside ionosphere The PEB is not a pressure balance boundary but is located where the shocked sheath flow is diverted around the ionosphere</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2023JA031353</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Boundaries ; Ion composition ; Ionosphere ; Ions ; Magnetic fields ; Mars ; Mars ionosphere ; Mars magnetosphere ; Mars missions ; MAVEN ; photoelectron boundary ; Photoelectrons ; plasma boundaries ; Sciences of the Universe ; Sheaths ; Solar wind ; Solar wind flow ; Sun‐Mars interaction ; Switches ; Wind flow</subject><ispartof>Journal of Geophysical Research: Space Physics, 2023-05, Vol.128 (5), p.n/a</ispartof><rights>2023. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3802-8650d4f2a06b88bd4c4a67c981aa43cfa3f149419d88033a2bc968b88df4e16c3</citedby><cites>FETCH-LOGICAL-c3802-8650d4f2a06b88bd4c4a67c981aa43cfa3f149419d88033a2bc968b88df4e16c3</cites><orcidid>0000-0003-3431-0739 ; 0000-0002-5121-600X ; 0000-0002-2116-6558 ; 0000-0001-8932-368X ; 0000-0002-2778-4998 ; 0000-0001-9154-7236 ; 0000-0001-6250-7665 ; 0000-0003-2584-7091 ; 0000-0002-7463-9419 ; 0000-0001-5332-9561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023JA031353$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023JA031353$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-04473200$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Shaosui</creatorcontrib><creatorcontrib>Mitchell, David L.</creatorcontrib><creatorcontrib>McFadden, James P.</creatorcontrib><creatorcontrib>Fowler, Christopher M.</creatorcontrib><creatorcontrib>Hanley, Kathleen</creatorcontrib><creatorcontrib>Weber, Tristan</creatorcontrib><creatorcontrib>Brain, David A.</creatorcontrib><creatorcontrib>Ma, Yingjuan</creatorcontrib><creatorcontrib>DiBraccio, Gina A.</creatorcontrib><creatorcontrib>Mazelle, Christian</creatorcontrib><creatorcontrib>Curry, Shannon M.</creatorcontrib><title>Photoelectron Boundary: The Top of the Dayside Ionosphere at Mars</title><title>Journal of Geophysical Research: Space Physics</title><description>The interaction between Mars and the solar wind results in different plasma regimes separated by several boundaries, among which the separation between the sheath flow and the ionosphere is complicated. Previous studies have provided different and sometimes opposite findings regarding this region. In this study, we utilize observations from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission to revisit boundaries within this region and perhaps reconcile some differences. More specifically, we start with the photoelectron boundary (PEB), a topological boundary that separates magnetic field lines having access to the dayside ionosphere (open or closed) from those connected to the solar wind on both ends (draped). We find that large gradients in the planetary ion densiti occur across the PEB and that the dominant ion switches from heavy planetary ions to protons near the PEB, indicating that the PEB falls within the ion composition boundary (ICB). Furthermore, our results show that the PEB is not a pressure balance boundary; rather the magnetic pressure dominates both sides of the PEB. Meanwhile, we find that the PEB is located where the shocked solar wind flow stops penetrating deeper into the ionosphere. These findings suggest the PEB marks the top of the Mars dayside ionosphere and also the interface where the sheath plasma flow deflects around the obstacle going downstream. Key Points Large gradients in planetary ion density occur across the photoelectron boundary (PEB) and the PEB falls within the ion composition boundary The PEB can be considered as the top of the Mars dayside ionosphere The PEB is not a pressure balance boundary but is located where the shocked sheath flow is diverted around the ionosphere</description><subject>Boundaries</subject><subject>Ion composition</subject><subject>Ionosphere</subject><subject>Ions</subject><subject>Magnetic fields</subject><subject>Mars</subject><subject>Mars ionosphere</subject><subject>Mars magnetosphere</subject><subject>Mars missions</subject><subject>MAVEN</subject><subject>photoelectron boundary</subject><subject>Photoelectrons</subject><subject>plasma boundaries</subject><subject>Sciences of the Universe</subject><subject>Sheaths</subject><subject>Solar wind</subject><subject>Solar wind flow</subject><subject>Sun‐Mars interaction</subject><subject>Switches</subject><subject>Wind flow</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouKx78wcEvInVfLVNvNVd3Q9WFFnPIZumtEttatIq--_NUhVPzmVehod53xkAzjG6xoiIG4IIXWWIYhrTIzAiOBGRYIgc_2jK0SmYeL9DoXgY4XgEsufSdtbURnfONvDO9k2u3P4WbkoDN7aFtoBdkDO191Vu4NI21relcQaqDj4q58_ASaFqbybffQxeH-4300W0fpovp9k60sGYRDyJUc4KolCy5XybM81UkmrBsVKM6kLRAjPBsMg5R5QqstUi4QHNC2ZwoukYXA57S1XL1lVvIaa0qpKLbC2rxvcSMZZSgtAHDvDFALfOvvfGd3Jne9eEfJJwzNM4-B6oq4HSznrvTPG7FyN5eKr8-9SA0wH_rGqz_5eVq_lLFqfhcPoFtyJ1Bg</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Xu, Shaosui</creator><creator>Mitchell, David L.</creator><creator>McFadden, James P.</creator><creator>Fowler, Christopher M.</creator><creator>Hanley, Kathleen</creator><creator>Weber, Tristan</creator><creator>Brain, David A.</creator><creator>Ma, Yingjuan</creator><creator>DiBraccio, Gina A.</creator><creator>Mazelle, Christian</creator><creator>Curry, Shannon M.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3431-0739</orcidid><orcidid>https://orcid.org/0000-0002-5121-600X</orcidid><orcidid>https://orcid.org/0000-0002-2116-6558</orcidid><orcidid>https://orcid.org/0000-0001-8932-368X</orcidid><orcidid>https://orcid.org/0000-0002-2778-4998</orcidid><orcidid>https://orcid.org/0000-0001-9154-7236</orcidid><orcidid>https://orcid.org/0000-0001-6250-7665</orcidid><orcidid>https://orcid.org/0000-0003-2584-7091</orcidid><orcidid>https://orcid.org/0000-0002-7463-9419</orcidid><orcidid>https://orcid.org/0000-0001-5332-9561</orcidid></search><sort><creationdate>202305</creationdate><title>Photoelectron Boundary: The Top of the Dayside Ionosphere at Mars</title><author>Xu, Shaosui ; Mitchell, David L. ; McFadden, James P. ; Fowler, Christopher M. ; Hanley, Kathleen ; Weber, Tristan ; Brain, David A. ; Ma, Yingjuan ; DiBraccio, Gina A. ; Mazelle, Christian ; Curry, Shannon M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3802-8650d4f2a06b88bd4c4a67c981aa43cfa3f149419d88033a2bc968b88df4e16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundaries</topic><topic>Ion composition</topic><topic>Ionosphere</topic><topic>Ions</topic><topic>Magnetic fields</topic><topic>Mars</topic><topic>Mars ionosphere</topic><topic>Mars magnetosphere</topic><topic>Mars missions</topic><topic>MAVEN</topic><topic>photoelectron boundary</topic><topic>Photoelectrons</topic><topic>plasma boundaries</topic><topic>Sciences of the Universe</topic><topic>Sheaths</topic><topic>Solar wind</topic><topic>Solar wind flow</topic><topic>Sun‐Mars interaction</topic><topic>Switches</topic><topic>Wind flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shaosui</creatorcontrib><creatorcontrib>Mitchell, David L.</creatorcontrib><creatorcontrib>McFadden, James P.</creatorcontrib><creatorcontrib>Fowler, Christopher M.</creatorcontrib><creatorcontrib>Hanley, Kathleen</creatorcontrib><creatorcontrib>Weber, Tristan</creatorcontrib><creatorcontrib>Brain, David A.</creatorcontrib><creatorcontrib>Ma, Yingjuan</creatorcontrib><creatorcontrib>DiBraccio, Gina A.</creatorcontrib><creatorcontrib>Mazelle, Christian</creatorcontrib><creatorcontrib>Curry, Shannon M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research: Space Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shaosui</au><au>Mitchell, David L.</au><au>McFadden, James P.</au><au>Fowler, Christopher M.</au><au>Hanley, Kathleen</au><au>Weber, Tristan</au><au>Brain, David A.</au><au>Ma, Yingjuan</au><au>DiBraccio, Gina A.</au><au>Mazelle, Christian</au><au>Curry, Shannon M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectron Boundary: The Top of the Dayside Ionosphere at Mars</atitle><jtitle>Journal of Geophysical Research: Space Physics</jtitle><date>2023-05</date><risdate>2023</risdate><volume>128</volume><issue>5</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>The interaction between Mars and the solar wind results in different plasma regimes separated by several boundaries, among which the separation between the sheath flow and the ionosphere is complicated. Previous studies have provided different and sometimes opposite findings regarding this region. In this study, we utilize observations from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission to revisit boundaries within this region and perhaps reconcile some differences. More specifically, we start with the photoelectron boundary (PEB), a topological boundary that separates magnetic field lines having access to the dayside ionosphere (open or closed) from those connected to the solar wind on both ends (draped). We find that large gradients in the planetary ion densiti occur across the PEB and that the dominant ion switches from heavy planetary ions to protons near the PEB, indicating that the PEB falls within the ion composition boundary (ICB). Furthermore, our results show that the PEB is not a pressure balance boundary; rather the magnetic pressure dominates both sides of the PEB. Meanwhile, we find that the PEB is located where the shocked solar wind flow stops penetrating deeper into the ionosphere. These findings suggest the PEB marks the top of the Mars dayside ionosphere and also the interface where the sheath plasma flow deflects around the obstacle going downstream. Key Points Large gradients in planetary ion density occur across the photoelectron boundary (PEB) and the PEB falls within the ion composition boundary The PEB can be considered as the top of the Mars dayside ionosphere The PEB is not a pressure balance boundary but is located where the shocked sheath flow is diverted around the ionosphere</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2023JA031353</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3431-0739</orcidid><orcidid>https://orcid.org/0000-0002-5121-600X</orcidid><orcidid>https://orcid.org/0000-0002-2116-6558</orcidid><orcidid>https://orcid.org/0000-0001-8932-368X</orcidid><orcidid>https://orcid.org/0000-0002-2778-4998</orcidid><orcidid>https://orcid.org/0000-0001-9154-7236</orcidid><orcidid>https://orcid.org/0000-0001-6250-7665</orcidid><orcidid>https://orcid.org/0000-0003-2584-7091</orcidid><orcidid>https://orcid.org/0000-0002-7463-9419</orcidid><orcidid>https://orcid.org/0000-0001-5332-9561</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of Geophysical Research: Space Physics, 2023-05, Vol.128 (5), p.n/a
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_2818759811
source Access via Wiley Online Library
subjects Boundaries
Ion composition
Ionosphere
Ions
Magnetic fields
Mars
Mars ionosphere
Mars magnetosphere
Mars missions
MAVEN
photoelectron boundary
Photoelectrons
plasma boundaries
Sciences of the Universe
Sheaths
Solar wind
Solar wind flow
Sun‐Mars interaction
Switches
Wind flow
title Photoelectron Boundary: The Top of the Dayside Ionosphere at Mars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectron%20Boundary:%20The%20Top%20of%20the%20Dayside%20Ionosphere%20at%20Mars&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Space%20Physics&rft.au=Xu,%20Shaosui&rft.date=2023-05&rft.volume=128&rft.issue=5&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2023JA031353&rft_dat=%3Cproquest_hal_p%3E2818759811%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818759811&rft_id=info:pmid/&rfr_iscdi=true