Photoelectron Boundary: The Top of the Dayside Ionosphere at Mars
The interaction between Mars and the solar wind results in different plasma regimes separated by several boundaries, among which the separation between the sheath flow and the ionosphere is complicated. Previous studies have provided different and sometimes opposite findings regarding this region. I...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Space Physics 2023-05, Vol.128 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of Geophysical Research: Space Physics |
container_volume | 128 |
creator | Xu, Shaosui Mitchell, David L. McFadden, James P. Fowler, Christopher M. Hanley, Kathleen Weber, Tristan Brain, David A. Ma, Yingjuan DiBraccio, Gina A. Mazelle, Christian Curry, Shannon M. |
description | The interaction between Mars and the solar wind results in different plasma regimes separated by several boundaries, among which the separation between the sheath flow and the ionosphere is complicated. Previous studies have provided different and sometimes opposite findings regarding this region. In this study, we utilize observations from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission to revisit boundaries within this region and perhaps reconcile some differences. More specifically, we start with the photoelectron boundary (PEB), a topological boundary that separates magnetic field lines having access to the dayside ionosphere (open or closed) from those connected to the solar wind on both ends (draped). We find that large gradients in the planetary ion densiti occur across the PEB and that the dominant ion switches from heavy planetary ions to protons near the PEB, indicating that the PEB falls within the ion composition boundary (ICB). Furthermore, our results show that the PEB is not a pressure balance boundary; rather the magnetic pressure dominates both sides of the PEB. Meanwhile, we find that the PEB is located where the shocked solar wind flow stops penetrating deeper into the ionosphere. These findings suggest the PEB marks the top of the Mars dayside ionosphere and also the interface where the sheath plasma flow deflects around the obstacle going downstream.
Key Points
Large gradients in planetary ion density occur across the photoelectron boundary (PEB) and the PEB falls within the ion composition boundary
The PEB can be considered as the top of the Mars dayside ionosphere
The PEB is not a pressure balance boundary but is located where the shocked sheath flow is diverted around the ionosphere |
doi_str_mv | 10.1029/2023JA031353 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2818759811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818759811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3802-8650d4f2a06b88bd4c4a67c981aa43cfa3f149419d88033a2bc968b88df4e16c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKx78wcEvInVfLVNvNVd3Q9WFFnPIZumtEttatIq--_NUhVPzmVehod53xkAzjG6xoiIG4IIXWWIYhrTIzAiOBGRYIgc_2jK0SmYeL9DoXgY4XgEsufSdtbURnfONvDO9k2u3P4WbkoDN7aFtoBdkDO191Vu4NI21relcQaqDj4q58_ASaFqbybffQxeH-4300W0fpovp9k60sGYRDyJUc4KolCy5XybM81UkmrBsVKM6kLRAjPBsMg5R5QqstUi4QHNC2ZwoukYXA57S1XL1lVvIaa0qpKLbC2rxvcSMZZSgtAHDvDFALfOvvfGd3Jne9eEfJJwzNM4-B6oq4HSznrvTPG7FyN5eKr8-9SA0wH_rGqz_5eVq_lLFqfhcPoFtyJ1Bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818759811</pqid></control><display><type>article</type><title>Photoelectron Boundary: The Top of the Dayside Ionosphere at Mars</title><source>Access via Wiley Online Library</source><creator>Xu, Shaosui ; Mitchell, David L. ; McFadden, James P. ; Fowler, Christopher M. ; Hanley, Kathleen ; Weber, Tristan ; Brain, David A. ; Ma, Yingjuan ; DiBraccio, Gina A. ; Mazelle, Christian ; Curry, Shannon M.</creator><creatorcontrib>Xu, Shaosui ; Mitchell, David L. ; McFadden, James P. ; Fowler, Christopher M. ; Hanley, Kathleen ; Weber, Tristan ; Brain, David A. ; Ma, Yingjuan ; DiBraccio, Gina A. ; Mazelle, Christian ; Curry, Shannon M.</creatorcontrib><description>The interaction between Mars and the solar wind results in different plasma regimes separated by several boundaries, among which the separation between the sheath flow and the ionosphere is complicated. Previous studies have provided different and sometimes opposite findings regarding this region. In this study, we utilize observations from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission to revisit boundaries within this region and perhaps reconcile some differences. More specifically, we start with the photoelectron boundary (PEB), a topological boundary that separates magnetic field lines having access to the dayside ionosphere (open or closed) from those connected to the solar wind on both ends (draped). We find that large gradients in the planetary ion densiti occur across the PEB and that the dominant ion switches from heavy planetary ions to protons near the PEB, indicating that the PEB falls within the ion composition boundary (ICB). Furthermore, our results show that the PEB is not a pressure balance boundary; rather the magnetic pressure dominates both sides of the PEB. Meanwhile, we find that the PEB is located where the shocked solar wind flow stops penetrating deeper into the ionosphere. These findings suggest the PEB marks the top of the Mars dayside ionosphere and also the interface where the sheath plasma flow deflects around the obstacle going downstream.
Key Points
Large gradients in planetary ion density occur across the photoelectron boundary (PEB) and the PEB falls within the ion composition boundary
The PEB can be considered as the top of the Mars dayside ionosphere
The PEB is not a pressure balance boundary but is located where the shocked sheath flow is diverted around the ionosphere</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2023JA031353</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Boundaries ; Ion composition ; Ionosphere ; Ions ; Magnetic fields ; Mars ; Mars ionosphere ; Mars magnetosphere ; Mars missions ; MAVEN ; photoelectron boundary ; Photoelectrons ; plasma boundaries ; Sciences of the Universe ; Sheaths ; Solar wind ; Solar wind flow ; Sun‐Mars interaction ; Switches ; Wind flow</subject><ispartof>Journal of Geophysical Research: Space Physics, 2023-05, Vol.128 (5), p.n/a</ispartof><rights>2023. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3802-8650d4f2a06b88bd4c4a67c981aa43cfa3f149419d88033a2bc968b88df4e16c3</citedby><cites>FETCH-LOGICAL-c3802-8650d4f2a06b88bd4c4a67c981aa43cfa3f149419d88033a2bc968b88df4e16c3</cites><orcidid>0000-0003-3431-0739 ; 0000-0002-5121-600X ; 0000-0002-2116-6558 ; 0000-0001-8932-368X ; 0000-0002-2778-4998 ; 0000-0001-9154-7236 ; 0000-0001-6250-7665 ; 0000-0003-2584-7091 ; 0000-0002-7463-9419 ; 0000-0001-5332-9561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023JA031353$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023JA031353$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-04473200$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Shaosui</creatorcontrib><creatorcontrib>Mitchell, David L.</creatorcontrib><creatorcontrib>McFadden, James P.</creatorcontrib><creatorcontrib>Fowler, Christopher M.</creatorcontrib><creatorcontrib>Hanley, Kathleen</creatorcontrib><creatorcontrib>Weber, Tristan</creatorcontrib><creatorcontrib>Brain, David A.</creatorcontrib><creatorcontrib>Ma, Yingjuan</creatorcontrib><creatorcontrib>DiBraccio, Gina A.</creatorcontrib><creatorcontrib>Mazelle, Christian</creatorcontrib><creatorcontrib>Curry, Shannon M.</creatorcontrib><title>Photoelectron Boundary: The Top of the Dayside Ionosphere at Mars</title><title>Journal of Geophysical Research: Space Physics</title><description>The interaction between Mars and the solar wind results in different plasma regimes separated by several boundaries, among which the separation between the sheath flow and the ionosphere is complicated. Previous studies have provided different and sometimes opposite findings regarding this region. In this study, we utilize observations from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission to revisit boundaries within this region and perhaps reconcile some differences. More specifically, we start with the photoelectron boundary (PEB), a topological boundary that separates magnetic field lines having access to the dayside ionosphere (open or closed) from those connected to the solar wind on both ends (draped). We find that large gradients in the planetary ion densiti occur across the PEB and that the dominant ion switches from heavy planetary ions to protons near the PEB, indicating that the PEB falls within the ion composition boundary (ICB). Furthermore, our results show that the PEB is not a pressure balance boundary; rather the magnetic pressure dominates both sides of the PEB. Meanwhile, we find that the PEB is located where the shocked solar wind flow stops penetrating deeper into the ionosphere. These findings suggest the PEB marks the top of the Mars dayside ionosphere and also the interface where the sheath plasma flow deflects around the obstacle going downstream.
Key Points
Large gradients in planetary ion density occur across the photoelectron boundary (PEB) and the PEB falls within the ion composition boundary
The PEB can be considered as the top of the Mars dayside ionosphere
The PEB is not a pressure balance boundary but is located where the shocked sheath flow is diverted around the ionosphere</description><subject>Boundaries</subject><subject>Ion composition</subject><subject>Ionosphere</subject><subject>Ions</subject><subject>Magnetic fields</subject><subject>Mars</subject><subject>Mars ionosphere</subject><subject>Mars magnetosphere</subject><subject>Mars missions</subject><subject>MAVEN</subject><subject>photoelectron boundary</subject><subject>Photoelectrons</subject><subject>plasma boundaries</subject><subject>Sciences of the Universe</subject><subject>Sheaths</subject><subject>Solar wind</subject><subject>Solar wind flow</subject><subject>Sun‐Mars interaction</subject><subject>Switches</subject><subject>Wind flow</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouKx78wcEvInVfLVNvNVd3Q9WFFnPIZumtEttatIq--_NUhVPzmVehod53xkAzjG6xoiIG4IIXWWIYhrTIzAiOBGRYIgc_2jK0SmYeL9DoXgY4XgEsufSdtbURnfONvDO9k2u3P4WbkoDN7aFtoBdkDO191Vu4NI21relcQaqDj4q58_ASaFqbybffQxeH-4300W0fpovp9k60sGYRDyJUc4KolCy5XybM81UkmrBsVKM6kLRAjPBsMg5R5QqstUi4QHNC2ZwoukYXA57S1XL1lVvIaa0qpKLbC2rxvcSMZZSgtAHDvDFALfOvvfGd3Jne9eEfJJwzNM4-B6oq4HSznrvTPG7FyN5eKr8-9SA0wH_rGqz_5eVq_lLFqfhcPoFtyJ1Bg</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Xu, Shaosui</creator><creator>Mitchell, David L.</creator><creator>McFadden, James P.</creator><creator>Fowler, Christopher M.</creator><creator>Hanley, Kathleen</creator><creator>Weber, Tristan</creator><creator>Brain, David A.</creator><creator>Ma, Yingjuan</creator><creator>DiBraccio, Gina A.</creator><creator>Mazelle, Christian</creator><creator>Curry, Shannon M.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3431-0739</orcidid><orcidid>https://orcid.org/0000-0002-5121-600X</orcidid><orcidid>https://orcid.org/0000-0002-2116-6558</orcidid><orcidid>https://orcid.org/0000-0001-8932-368X</orcidid><orcidid>https://orcid.org/0000-0002-2778-4998</orcidid><orcidid>https://orcid.org/0000-0001-9154-7236</orcidid><orcidid>https://orcid.org/0000-0001-6250-7665</orcidid><orcidid>https://orcid.org/0000-0003-2584-7091</orcidid><orcidid>https://orcid.org/0000-0002-7463-9419</orcidid><orcidid>https://orcid.org/0000-0001-5332-9561</orcidid></search><sort><creationdate>202305</creationdate><title>Photoelectron Boundary: The Top of the Dayside Ionosphere at Mars</title><author>Xu, Shaosui ; Mitchell, David L. ; McFadden, James P. ; Fowler, Christopher M. ; Hanley, Kathleen ; Weber, Tristan ; Brain, David A. ; Ma, Yingjuan ; DiBraccio, Gina A. ; Mazelle, Christian ; Curry, Shannon M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3802-8650d4f2a06b88bd4c4a67c981aa43cfa3f149419d88033a2bc968b88df4e16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundaries</topic><topic>Ion composition</topic><topic>Ionosphere</topic><topic>Ions</topic><topic>Magnetic fields</topic><topic>Mars</topic><topic>Mars ionosphere</topic><topic>Mars magnetosphere</topic><topic>Mars missions</topic><topic>MAVEN</topic><topic>photoelectron boundary</topic><topic>Photoelectrons</topic><topic>plasma boundaries</topic><topic>Sciences of the Universe</topic><topic>Sheaths</topic><topic>Solar wind</topic><topic>Solar wind flow</topic><topic>Sun‐Mars interaction</topic><topic>Switches</topic><topic>Wind flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shaosui</creatorcontrib><creatorcontrib>Mitchell, David L.</creatorcontrib><creatorcontrib>McFadden, James P.</creatorcontrib><creatorcontrib>Fowler, Christopher M.</creatorcontrib><creatorcontrib>Hanley, Kathleen</creatorcontrib><creatorcontrib>Weber, Tristan</creatorcontrib><creatorcontrib>Brain, David A.</creatorcontrib><creatorcontrib>Ma, Yingjuan</creatorcontrib><creatorcontrib>DiBraccio, Gina A.</creatorcontrib><creatorcontrib>Mazelle, Christian</creatorcontrib><creatorcontrib>Curry, Shannon M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research: Space Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shaosui</au><au>Mitchell, David L.</au><au>McFadden, James P.</au><au>Fowler, Christopher M.</au><au>Hanley, Kathleen</au><au>Weber, Tristan</au><au>Brain, David A.</au><au>Ma, Yingjuan</au><au>DiBraccio, Gina A.</au><au>Mazelle, Christian</au><au>Curry, Shannon M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectron Boundary: The Top of the Dayside Ionosphere at Mars</atitle><jtitle>Journal of Geophysical Research: Space Physics</jtitle><date>2023-05</date><risdate>2023</risdate><volume>128</volume><issue>5</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>The interaction between Mars and the solar wind results in different plasma regimes separated by several boundaries, among which the separation between the sheath flow and the ionosphere is complicated. Previous studies have provided different and sometimes opposite findings regarding this region. In this study, we utilize observations from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission to revisit boundaries within this region and perhaps reconcile some differences. More specifically, we start with the photoelectron boundary (PEB), a topological boundary that separates magnetic field lines having access to the dayside ionosphere (open or closed) from those connected to the solar wind on both ends (draped). We find that large gradients in the planetary ion densiti occur across the PEB and that the dominant ion switches from heavy planetary ions to protons near the PEB, indicating that the PEB falls within the ion composition boundary (ICB). Furthermore, our results show that the PEB is not a pressure balance boundary; rather the magnetic pressure dominates both sides of the PEB. Meanwhile, we find that the PEB is located where the shocked solar wind flow stops penetrating deeper into the ionosphere. These findings suggest the PEB marks the top of the Mars dayside ionosphere and also the interface where the sheath plasma flow deflects around the obstacle going downstream.
Key Points
Large gradients in planetary ion density occur across the photoelectron boundary (PEB) and the PEB falls within the ion composition boundary
The PEB can be considered as the top of the Mars dayside ionosphere
The PEB is not a pressure balance boundary but is located where the shocked sheath flow is diverted around the ionosphere</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2023JA031353</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3431-0739</orcidid><orcidid>https://orcid.org/0000-0002-5121-600X</orcidid><orcidid>https://orcid.org/0000-0002-2116-6558</orcidid><orcidid>https://orcid.org/0000-0001-8932-368X</orcidid><orcidid>https://orcid.org/0000-0002-2778-4998</orcidid><orcidid>https://orcid.org/0000-0001-9154-7236</orcidid><orcidid>https://orcid.org/0000-0001-6250-7665</orcidid><orcidid>https://orcid.org/0000-0003-2584-7091</orcidid><orcidid>https://orcid.org/0000-0002-7463-9419</orcidid><orcidid>https://orcid.org/0000-0001-5332-9561</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of Geophysical Research: Space Physics, 2023-05, Vol.128 (5), p.n/a |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_journals_2818759811 |
source | Access via Wiley Online Library |
subjects | Boundaries Ion composition Ionosphere Ions Magnetic fields Mars Mars ionosphere Mars magnetosphere Mars missions MAVEN photoelectron boundary Photoelectrons plasma boundaries Sciences of the Universe Sheaths Solar wind Solar wind flow Sun‐Mars interaction Switches Wind flow |
title | Photoelectron Boundary: The Top of the Dayside Ionosphere at Mars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectron%20Boundary:%20The%20Top%20of%20the%20Dayside%20Ionosphere%20at%20Mars&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Space%20Physics&rft.au=Xu,%20Shaosui&rft.date=2023-05&rft.volume=128&rft.issue=5&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2023JA031353&rft_dat=%3Cproquest_hal_p%3E2818759811%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818759811&rft_id=info:pmid/&rfr_iscdi=true |