Equitable Choosability of Prism Graphs

A graph \(G\) is equitably \(k\)-choosable if, for every \(k\)-uniform list assignment \(L\), \(G\) is \(L\)-colorable and each color appears on at most \(\left\lceil |V(G)|/k\right\rceil\) vertices. Equitable list-coloring was introduced by Kostochka, Pelsmajer, and West in 2003. They conjectured t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Hogenson, Kirsten, Johnston, Dan, O'Hara, Suzanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph \(G\) is equitably \(k\)-choosable if, for every \(k\)-uniform list assignment \(L\), \(G\) is \(L\)-colorable and each color appears on at most \(\left\lceil |V(G)|/k\right\rceil\) vertices. Equitable list-coloring was introduced by Kostochka, Pelsmajer, and West in 2003. They conjectured that a connected graph \(G\) with \(\Delta(G)\geq 3\) is equitably \(\Delta(G)\)-choosable, as long as \(G\) is not complete or \(K_{d,d}\) for odd \(d\). In this paper, we use a discharging argument to prove their conjecture for the infinite family of prism graphs.
ISSN:2331-8422