Modular Domain Adaptation for Conformer-Based Streaming ASR

Speech data from different domains has distinct acoustic and linguistic characteristics. It is common to train a single multidomain model such as a Conformer transducer for speech recognition on a mixture of data from all domains. However, changing data in one domain or adding a new domain would req...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Li, Qiujia, Li, Bo, Hwang, Dongseong, Sainath, Tara N, Mengibar, Pedro M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Qiujia
Li, Bo
Hwang, Dongseong
Sainath, Tara N
Mengibar, Pedro M
description Speech data from different domains has distinct acoustic and linguistic characteristics. It is common to train a single multidomain model such as a Conformer transducer for speech recognition on a mixture of data from all domains. However, changing data in one domain or adding a new domain would require the multidomain model to be retrained. To this end, we propose a framework called modular domain adaptation (MDA) that enables a single model to process multidomain data while keeping all parameters domain-specific, i.e., each parameter is only trained by data from one domain. On a streaming Conformer transducer trained only on video caption data, experimental results show that an MDA-based model can reach similar performance as the multidomain model on other domains such as voice search and dictation by adding per-domain adapters and per-domain feed-forward networks in the Conformer encoder.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2818541305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818541305</sourcerecordid><originalsourceid>FETCH-proquest_journals_28185413053</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScA2nSaMGpVsXFxbqXC0klpc2t-Xl_O_gATt9wzopkQsqCVaUQG5KHMHDOxeEolJIZOT1QpxE8veAE1tFawxwhWnS0R08bdAuT8ewMwWjaRm9gsu5N6_a5I-sexmDyn1uyv11fzZ3NHj_JhNgNmLxbUieqolJlIbmS_11fuzo2iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818541305</pqid></control><display><type>article</type><title>Modular Domain Adaptation for Conformer-Based Streaming ASR</title><source>Free E- Journals</source><creator>Li, Qiujia ; Li, Bo ; Hwang, Dongseong ; Sainath, Tara N ; Mengibar, Pedro M</creator><creatorcontrib>Li, Qiujia ; Li, Bo ; Hwang, Dongseong ; Sainath, Tara N ; Mengibar, Pedro M</creatorcontrib><description>Speech data from different domains has distinct acoustic and linguistic characteristics. It is common to train a single multidomain model such as a Conformer transducer for speech recognition on a mixture of data from all domains. However, changing data in one domain or adding a new domain would require the multidomain model to be retrained. To this end, we propose a framework called modular domain adaptation (MDA) that enables a single model to process multidomain data while keeping all parameters domain-specific, i.e., each parameter is only trained by data from one domain. On a streaming Conformer transducer trained only on video caption data, experimental results show that an MDA-based model can reach similar performance as the multidomain model on other domains such as voice search and dictation by adding per-domain adapters and per-domain feed-forward networks in the Conformer encoder.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Coders ; Mathematical models ; Parameters ; Speech recognition ; Transducers</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Li, Qiujia</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Hwang, Dongseong</creatorcontrib><creatorcontrib>Sainath, Tara N</creatorcontrib><creatorcontrib>Mengibar, Pedro M</creatorcontrib><title>Modular Domain Adaptation for Conformer-Based Streaming ASR</title><title>arXiv.org</title><description>Speech data from different domains has distinct acoustic and linguistic characteristics. It is common to train a single multidomain model such as a Conformer transducer for speech recognition on a mixture of data from all domains. However, changing data in one domain or adding a new domain would require the multidomain model to be retrained. To this end, we propose a framework called modular domain adaptation (MDA) that enables a single model to process multidomain data while keeping all parameters domain-specific, i.e., each parameter is only trained by data from one domain. On a streaming Conformer transducer trained only on video caption data, experimental results show that an MDA-based model can reach similar performance as the multidomain model on other domains such as voice search and dictation by adding per-domain adapters and per-domain feed-forward networks in the Conformer encoder.</description><subject>Adaptation</subject><subject>Coders</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Speech recognition</subject><subject>Transducers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScA2nSaMGpVsXFxbqXC0klpc2t-Xl_O_gATt9wzopkQsqCVaUQG5KHMHDOxeEolJIZOT1QpxE8veAE1tFawxwhWnS0R08bdAuT8ewMwWjaRm9gsu5N6_a5I-sexmDyn1uyv11fzZ3NHj_JhNgNmLxbUieqolJlIbmS_11fuzo2iQ</recordid><startdate>20230522</startdate><enddate>20230522</enddate><creator>Li, Qiujia</creator><creator>Li, Bo</creator><creator>Hwang, Dongseong</creator><creator>Sainath, Tara N</creator><creator>Mengibar, Pedro M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230522</creationdate><title>Modular Domain Adaptation for Conformer-Based Streaming ASR</title><author>Li, Qiujia ; Li, Bo ; Hwang, Dongseong ; Sainath, Tara N ; Mengibar, Pedro M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28185413053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Coders</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Speech recognition</topic><topic>Transducers</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiujia</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Hwang, Dongseong</creatorcontrib><creatorcontrib>Sainath, Tara N</creatorcontrib><creatorcontrib>Mengibar, Pedro M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiujia</au><au>Li, Bo</au><au>Hwang, Dongseong</au><au>Sainath, Tara N</au><au>Mengibar, Pedro M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modular Domain Adaptation for Conformer-Based Streaming ASR</atitle><jtitle>arXiv.org</jtitle><date>2023-05-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Speech data from different domains has distinct acoustic and linguistic characteristics. It is common to train a single multidomain model such as a Conformer transducer for speech recognition on a mixture of data from all domains. However, changing data in one domain or adding a new domain would require the multidomain model to be retrained. To this end, we propose a framework called modular domain adaptation (MDA) that enables a single model to process multidomain data while keeping all parameters domain-specific, i.e., each parameter is only trained by data from one domain. On a streaming Conformer transducer trained only on video caption data, experimental results show that an MDA-based model can reach similar performance as the multidomain model on other domains such as voice search and dictation by adding per-domain adapters and per-domain feed-forward networks in the Conformer encoder.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2818541305
source Free E- Journals
subjects Adaptation
Coders
Mathematical models
Parameters
Speech recognition
Transducers
title Modular Domain Adaptation for Conformer-Based Streaming ASR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modular%20Domain%20Adaptation%20for%20Conformer-Based%20Streaming%20ASR&rft.jtitle=arXiv.org&rft.au=Li,%20Qiujia&rft.date=2023-05-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2818541305%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818541305&rft_id=info:pmid/&rfr_iscdi=true