Federated Variational Inference: Towards Improved Personalization and Generalization

Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Vedadi, Elahe, Dillon, Joshua V, Mansfield, Philip Andrew, Singhal, Karan, Afkanpour, Arash, Morningstar, Warren Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Vedadi, Elahe
Dillon, Joshua V
Mansfield, Philip Andrew
Singhal, Karan
Afkanpour, Arash
Morningstar, Warren Richard
description Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an optimal state, or generalize to new clients. We study personalization and generalization in stateless cross-device federated learning setups assuming heterogeneity in client data distributions and predictive models. We first propose a hierarchical generative model and formalize it using Bayesian Inference. We then approximate this process using Variational Inference to train our model efficiently. We call this algorithm Federated Variational Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2818535947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818535947</sourcerecordid><originalsourceid>FETCH-proquest_journals_28185359473</originalsourceid><addsrcrecordid>eNqNzEELgjAYxvERBEn5HQadBd1cWtfI8tZBuspLewXFtnqnBX36VtS90wMPP_4TFggpkyhPhZix0LkujmOxyoRSMmBVgRoJBtT8BNTC0FoDPS9Ng4TmjBte2QeQdry8XMnevTsiuTdqnx_NwWi-R-Mrv2vBpg30DsPvztmy2FXbQ-QLtxHdUHd2JJ9wtciTXEm1TjP5n3oB0TxBQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818535947</pqid></control><display><type>article</type><title>Federated Variational Inference: Towards Improved Personalization and Generalization</title><source>Free E- Journals</source><creator>Vedadi, Elahe ; Dillon, Joshua V ; Mansfield, Philip Andrew ; Singhal, Karan ; Afkanpour, Arash ; Morningstar, Warren Richard</creator><creatorcontrib>Vedadi, Elahe ; Dillon, Joshua V ; Mansfield, Philip Andrew ; Singhal, Karan ; Afkanpour, Arash ; Morningstar, Warren Richard</creatorcontrib><description>Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an optimal state, or generalize to new clients. We study personalization and generalization in stateless cross-device federated learning setups assuming heterogeneity in client data distributions and predictive models. We first propose a hierarchical generative model and formalize it using Bayesian Inference. We then approximate this process using Variational Inference to train our model efficiently. We call this algorithm Federated Variational Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Bayesian analysis ; Clients ; Heterogeneity ; Image classification ; Machine learning ; Prediction models ; Statistical inference</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Vedadi, Elahe</creatorcontrib><creatorcontrib>Dillon, Joshua V</creatorcontrib><creatorcontrib>Mansfield, Philip Andrew</creatorcontrib><creatorcontrib>Singhal, Karan</creatorcontrib><creatorcontrib>Afkanpour, Arash</creatorcontrib><creatorcontrib>Morningstar, Warren Richard</creatorcontrib><title>Federated Variational Inference: Towards Improved Personalization and Generalization</title><title>arXiv.org</title><description>Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an optimal state, or generalize to new clients. We study personalization and generalization in stateless cross-device federated learning setups assuming heterogeneity in client data distributions and predictive models. We first propose a hierarchical generative model and formalize it using Bayesian Inference. We then approximate this process using Variational Inference to train our model efficiently. We call this algorithm Federated Variational Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Clients</subject><subject>Heterogeneity</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Prediction models</subject><subject>Statistical inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzEELgjAYxvERBEn5HQadBd1cWtfI8tZBuspLewXFtnqnBX36VtS90wMPP_4TFggpkyhPhZix0LkujmOxyoRSMmBVgRoJBtT8BNTC0FoDPS9Ng4TmjBte2QeQdry8XMnevTsiuTdqnx_NwWi-R-Mrv2vBpg30DsPvztmy2FXbQ-QLtxHdUHd2JJ9wtciTXEm1TjP5n3oB0TxBQw</recordid><startdate>20230525</startdate><enddate>20230525</enddate><creator>Vedadi, Elahe</creator><creator>Dillon, Joshua V</creator><creator>Mansfield, Philip Andrew</creator><creator>Singhal, Karan</creator><creator>Afkanpour, Arash</creator><creator>Morningstar, Warren Richard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230525</creationdate><title>Federated Variational Inference: Towards Improved Personalization and Generalization</title><author>Vedadi, Elahe ; Dillon, Joshua V ; Mansfield, Philip Andrew ; Singhal, Karan ; Afkanpour, Arash ; Morningstar, Warren Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28185359473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Clients</topic><topic>Heterogeneity</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Prediction models</topic><topic>Statistical inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Vedadi, Elahe</creatorcontrib><creatorcontrib>Dillon, Joshua V</creatorcontrib><creatorcontrib>Mansfield, Philip Andrew</creatorcontrib><creatorcontrib>Singhal, Karan</creatorcontrib><creatorcontrib>Afkanpour, Arash</creatorcontrib><creatorcontrib>Morningstar, Warren Richard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vedadi, Elahe</au><au>Dillon, Joshua V</au><au>Mansfield, Philip Andrew</au><au>Singhal, Karan</au><au>Afkanpour, Arash</au><au>Morningstar, Warren Richard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Federated Variational Inference: Towards Improved Personalization and Generalization</atitle><jtitle>arXiv.org</jtitle><date>2023-05-25</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an optimal state, or generalize to new clients. We study personalization and generalization in stateless cross-device federated learning setups assuming heterogeneity in client data distributions and predictive models. We first propose a hierarchical generative model and formalize it using Bayesian Inference. We then approximate this process using Variational Inference to train our model efficiently. We call this algorithm Federated Variational Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2818535947
source Free E- Journals
subjects Algorithms
Bayesian analysis
Clients
Heterogeneity
Image classification
Machine learning
Prediction models
Statistical inference
title Federated Variational Inference: Towards Improved Personalization and Generalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Federated%20Variational%20Inference:%20Towards%20Improved%20Personalization%20and%20Generalization&rft.jtitle=arXiv.org&rft.au=Vedadi,%20Elahe&rft.date=2023-05-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2818535947%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818535947&rft_id=info:pmid/&rfr_iscdi=true