Federated Variational Inference: Towards Improved Personalization and Generalization
Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Vedadi, Elahe Dillon, Joshua V Mansfield, Philip Andrew Singhal, Karan Afkanpour, Arash Morningstar, Warren Richard |
description | Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an optimal state, or generalize to new clients. We study personalization and generalization in stateless cross-device federated learning setups assuming heterogeneity in client data distributions and predictive models. We first propose a hierarchical generative model and formalize it using Bayesian Inference. We then approximate this process using Variational Inference to train our model efficiently. We call this algorithm Federated Variational Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2818535947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818535947</sourcerecordid><originalsourceid>FETCH-proquest_journals_28185359473</originalsourceid><addsrcrecordid>eNqNzEELgjAYxvERBEn5HQadBd1cWtfI8tZBuspLewXFtnqnBX36VtS90wMPP_4TFggpkyhPhZix0LkujmOxyoRSMmBVgRoJBtT8BNTC0FoDPS9Ng4TmjBte2QeQdry8XMnevTsiuTdqnx_NwWi-R-Mrv2vBpg30DsPvztmy2FXbQ-QLtxHdUHd2JJ9wtciTXEm1TjP5n3oB0TxBQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818535947</pqid></control><display><type>article</type><title>Federated Variational Inference: Towards Improved Personalization and Generalization</title><source>Free E- Journals</source><creator>Vedadi, Elahe ; Dillon, Joshua V ; Mansfield, Philip Andrew ; Singhal, Karan ; Afkanpour, Arash ; Morningstar, Warren Richard</creator><creatorcontrib>Vedadi, Elahe ; Dillon, Joshua V ; Mansfield, Philip Andrew ; Singhal, Karan ; Afkanpour, Arash ; Morningstar, Warren Richard</creatorcontrib><description>Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an optimal state, or generalize to new clients. We study personalization and generalization in stateless cross-device federated learning setups assuming heterogeneity in client data distributions and predictive models. We first propose a hierarchical generative model and formalize it using Bayesian Inference. We then approximate this process using Variational Inference to train our model efficiently. We call this algorithm Federated Variational Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Bayesian analysis ; Clients ; Heterogeneity ; Image classification ; Machine learning ; Prediction models ; Statistical inference</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Vedadi, Elahe</creatorcontrib><creatorcontrib>Dillon, Joshua V</creatorcontrib><creatorcontrib>Mansfield, Philip Andrew</creatorcontrib><creatorcontrib>Singhal, Karan</creatorcontrib><creatorcontrib>Afkanpour, Arash</creatorcontrib><creatorcontrib>Morningstar, Warren Richard</creatorcontrib><title>Federated Variational Inference: Towards Improved Personalization and Generalization</title><title>arXiv.org</title><description>Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an optimal state, or generalize to new clients. We study personalization and generalization in stateless cross-device federated learning setups assuming heterogeneity in client data distributions and predictive models. We first propose a hierarchical generative model and formalize it using Bayesian Inference. We then approximate this process using Variational Inference to train our model efficiently. We call this algorithm Federated Variational Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Clients</subject><subject>Heterogeneity</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Prediction models</subject><subject>Statistical inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzEELgjAYxvERBEn5HQadBd1cWtfI8tZBuspLewXFtnqnBX36VtS90wMPP_4TFggpkyhPhZix0LkujmOxyoRSMmBVgRoJBtT8BNTC0FoDPS9Ng4TmjBte2QeQdry8XMnevTsiuTdqnx_NwWi-R-Mrv2vBpg30DsPvztmy2FXbQ-QLtxHdUHd2JJ9wtciTXEm1TjP5n3oB0TxBQw</recordid><startdate>20230525</startdate><enddate>20230525</enddate><creator>Vedadi, Elahe</creator><creator>Dillon, Joshua V</creator><creator>Mansfield, Philip Andrew</creator><creator>Singhal, Karan</creator><creator>Afkanpour, Arash</creator><creator>Morningstar, Warren Richard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230525</creationdate><title>Federated Variational Inference: Towards Improved Personalization and Generalization</title><author>Vedadi, Elahe ; Dillon, Joshua V ; Mansfield, Philip Andrew ; Singhal, Karan ; Afkanpour, Arash ; Morningstar, Warren Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28185359473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Clients</topic><topic>Heterogeneity</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Prediction models</topic><topic>Statistical inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Vedadi, Elahe</creatorcontrib><creatorcontrib>Dillon, Joshua V</creatorcontrib><creatorcontrib>Mansfield, Philip Andrew</creatorcontrib><creatorcontrib>Singhal, Karan</creatorcontrib><creatorcontrib>Afkanpour, Arash</creatorcontrib><creatorcontrib>Morningstar, Warren Richard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vedadi, Elahe</au><au>Dillon, Joshua V</au><au>Mansfield, Philip Andrew</au><au>Singhal, Karan</au><au>Afkanpour, Arash</au><au>Morningstar, Warren Richard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Federated Variational Inference: Towards Improved Personalization and Generalization</atitle><jtitle>arXiv.org</jtitle><date>2023-05-25</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an optimal state, or generalize to new clients. We study personalization and generalization in stateless cross-device federated learning setups assuming heterogeneity in client data distributions and predictive models. We first propose a hierarchical generative model and formalize it using Bayesian Inference. We then approximate this process using Variational Inference to train our model efficiently. We call this algorithm Federated Variational Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2818535947 |
source | Free E- Journals |
subjects | Algorithms Bayesian analysis Clients Heterogeneity Image classification Machine learning Prediction models Statistical inference |
title | Federated Variational Inference: Towards Improved Personalization and Generalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Federated%20Variational%20Inference:%20Towards%20Improved%20Personalization%20and%20Generalization&rft.jtitle=arXiv.org&rft.au=Vedadi,%20Elahe&rft.date=2023-05-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2818535947%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818535947&rft_id=info:pmid/&rfr_iscdi=true |