InstructAlign: High-and-Low Resource Language Alignment via Continual Crosslingual Instruction Tuning
Large language models (LLMs) that are tuned with instructions have demonstrated remarkable capabilities in various tasks and languages. However, their ability to generalize to underrepresented languages is limited due to the scarcity of available data. Additionally, directly adapting new languages t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cahyawijaya, Samuel Holy Lovenia Yu, Tiezheng Chung, Willy Fung, Pascale |
description | Large language models (LLMs) that are tuned with instructions have demonstrated remarkable capabilities in various tasks and languages. However, their ability to generalize to underrepresented languages is limited due to the scarcity of available data. Additionally, directly adapting new languages to instruction-tuned LLMs can result in catastrophic forgetting, which leads to the loss of multitasking ability. To address this issue, we propose InstructAlign which uses continual crosslingual instruction tuning to enable LLMs to align new unseen languages with previously learned high-resource languages. Our results demonstrate the effectiveness of InstructAlign in enabling the model to understand low-resource languages with limited parallel data while preventing catastrophic forgetting. Our work contributes to the advancement of language adaptation methods, particularly for adapting instruction-tuned LLMs to underrepresented languages. Our code is released on https://github.com/HLTCHKUST/InstructAlign |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2818533590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818533590</sourcerecordid><originalsourceid>FETCH-proquest_journals_28185335903</originalsourceid><addsrcrecordid>eNqNjcsKwjAURIMgWLT_cMF1oU2sVndSlApdSfcl1BhT4o3mob9vFd27GjhzmBmRiDKWJcWC0gmJnevTNKXLFc1zFhFxQOdt6PxWK4kbqJS8JBxPSW2ecBTOBNsJqDnKwKWAj3UV6OGhOJQGvcLANZTWOKfV29Lwm1QGoQk40BkZn7l2Iv7mlMz3u6askps19yCcb_vhCIeqpUVW5Izl65T9Z70AiKNHJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818533590</pqid></control><display><type>article</type><title>InstructAlign: High-and-Low Resource Language Alignment via Continual Crosslingual Instruction Tuning</title><source>Free E- Journals</source><creator>Cahyawijaya, Samuel ; Holy Lovenia ; Yu, Tiezheng ; Chung, Willy ; Fung, Pascale</creator><creatorcontrib>Cahyawijaya, Samuel ; Holy Lovenia ; Yu, Tiezheng ; Chung, Willy ; Fung, Pascale</creatorcontrib><description>Large language models (LLMs) that are tuned with instructions have demonstrated remarkable capabilities in various tasks and languages. However, their ability to generalize to underrepresented languages is limited due to the scarcity of available data. Additionally, directly adapting new languages to instruction-tuned LLMs can result in catastrophic forgetting, which leads to the loss of multitasking ability. To address this issue, we propose InstructAlign which uses continual crosslingual instruction tuning to enable LLMs to align new unseen languages with previously learned high-resource languages. Our results demonstrate the effectiveness of InstructAlign in enabling the model to understand low-resource languages with limited parallel data while preventing catastrophic forgetting. Our work contributes to the advancement of language adaptation methods, particularly for adapting instruction-tuned LLMs to underrepresented languages. Our code is released on https://github.com/HLTCHKUST/InstructAlign</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Languages ; Large language models ; Multitasking ; Teaching methods ; Tuning</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cahyawijaya, Samuel</creatorcontrib><creatorcontrib>Holy Lovenia</creatorcontrib><creatorcontrib>Yu, Tiezheng</creatorcontrib><creatorcontrib>Chung, Willy</creatorcontrib><creatorcontrib>Fung, Pascale</creatorcontrib><title>InstructAlign: High-and-Low Resource Language Alignment via Continual Crosslingual Instruction Tuning</title><title>arXiv.org</title><description>Large language models (LLMs) that are tuned with instructions have demonstrated remarkable capabilities in various tasks and languages. However, their ability to generalize to underrepresented languages is limited due to the scarcity of available data. Additionally, directly adapting new languages to instruction-tuned LLMs can result in catastrophic forgetting, which leads to the loss of multitasking ability. To address this issue, we propose InstructAlign which uses continual crosslingual instruction tuning to enable LLMs to align new unseen languages with previously learned high-resource languages. Our results demonstrate the effectiveness of InstructAlign in enabling the model to understand low-resource languages with limited parallel data while preventing catastrophic forgetting. Our work contributes to the advancement of language adaptation methods, particularly for adapting instruction-tuned LLMs to underrepresented languages. Our code is released on https://github.com/HLTCHKUST/InstructAlign</description><subject>Alignment</subject><subject>Languages</subject><subject>Large language models</subject><subject>Multitasking</subject><subject>Teaching methods</subject><subject>Tuning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcsKwjAURIMgWLT_cMF1oU2sVndSlApdSfcl1BhT4o3mob9vFd27GjhzmBmRiDKWJcWC0gmJnevTNKXLFc1zFhFxQOdt6PxWK4kbqJS8JBxPSW2ecBTOBNsJqDnKwKWAj3UV6OGhOJQGvcLANZTWOKfV29Lwm1QGoQk40BkZn7l2Iv7mlMz3u6askps19yCcb_vhCIeqpUVW5Izl65T9Z70AiKNHJw</recordid><startdate>20231024</startdate><enddate>20231024</enddate><creator>Cahyawijaya, Samuel</creator><creator>Holy Lovenia</creator><creator>Yu, Tiezheng</creator><creator>Chung, Willy</creator><creator>Fung, Pascale</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231024</creationdate><title>InstructAlign: High-and-Low Resource Language Alignment via Continual Crosslingual Instruction Tuning</title><author>Cahyawijaya, Samuel ; Holy Lovenia ; Yu, Tiezheng ; Chung, Willy ; Fung, Pascale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28185335903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alignment</topic><topic>Languages</topic><topic>Large language models</topic><topic>Multitasking</topic><topic>Teaching methods</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Cahyawijaya, Samuel</creatorcontrib><creatorcontrib>Holy Lovenia</creatorcontrib><creatorcontrib>Yu, Tiezheng</creatorcontrib><creatorcontrib>Chung, Willy</creatorcontrib><creatorcontrib>Fung, Pascale</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cahyawijaya, Samuel</au><au>Holy Lovenia</au><au>Yu, Tiezheng</au><au>Chung, Willy</au><au>Fung, Pascale</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>InstructAlign: High-and-Low Resource Language Alignment via Continual Crosslingual Instruction Tuning</atitle><jtitle>arXiv.org</jtitle><date>2023-10-24</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Large language models (LLMs) that are tuned with instructions have demonstrated remarkable capabilities in various tasks and languages. However, their ability to generalize to underrepresented languages is limited due to the scarcity of available data. Additionally, directly adapting new languages to instruction-tuned LLMs can result in catastrophic forgetting, which leads to the loss of multitasking ability. To address this issue, we propose InstructAlign which uses continual crosslingual instruction tuning to enable LLMs to align new unseen languages with previously learned high-resource languages. Our results demonstrate the effectiveness of InstructAlign in enabling the model to understand low-resource languages with limited parallel data while preventing catastrophic forgetting. Our work contributes to the advancement of language adaptation methods, particularly for adapting instruction-tuned LLMs to underrepresented languages. Our code is released on https://github.com/HLTCHKUST/InstructAlign</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2818533590 |
source | Free E- Journals |
subjects | Alignment Languages Large language models Multitasking Teaching methods Tuning |
title | InstructAlign: High-and-Low Resource Language Alignment via Continual Crosslingual Instruction Tuning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=InstructAlign:%20High-and-Low%20Resource%20Language%20Alignment%20via%20Continual%20Crosslingual%20Instruction%20Tuning&rft.jtitle=arXiv.org&rft.au=Cahyawijaya,%20Samuel&rft.date=2023-10-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2818533590%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818533590&rft_id=info:pmid/&rfr_iscdi=true |