Real-time running workouts monitoring using Cloud–Edge computing
In a world of ever-growing technology where smartwatches are becoming more and more widespread, we introduced an application that can attach a personal running coach on one’s wrist. We developed a highly scalable model that takes input from real coaches, conveys it into a running training on a watch...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2023-07, Vol.35 (19), p.13803-13822 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13822 |
---|---|
container_issue | 19 |
container_start_page | 13803 |
container_title | Neural computing & applications |
container_volume | 35 |
creator | Avram, Maria-Ruxandra Pop, Florin |
description | In a world of ever-growing technology where smartwatches are becoming more and more widespread, we introduced an application that can attach a personal running coach on one’s wrist. We developed a highly scalable model that takes input from real coaches, conveys it into a running training on a watch, analyzes the running performance, and gives real-time text and haptic feedback based on it. Using cloud technologies, we came up with a solution that provides end-to-end connectivity between a smartwatch and a coach or user. We empower people to track down their workouts and physical profiles easily and to connect with their trainers using a standard, interactive dashboard. The solution is presented in this paper. |
doi_str_mv | 10.1007/s00521-021-06675-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2818531990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818531990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1009c108f53c9ab92083d80bbf8aa007cfc2dcabd3e700bb7e79eaad00d0b9ea3</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoDrgquozdNH8lSh_EBA4LoOqRJOnScNjVpEHf-g3_ol5hQwZ2L--Dce-7jIHRO4JIA1FceoMwJhmRVVZeYHqAFKSjFFEp2iBbAi1Qq6DE68X4HAEXFygW6eTJyj6euN5kLw9AN2-zdulcbJp_1dugm6xIWfPKrvQ36-_NrrbcmU7YfwxThU3TUyr03Z79xiV5u18-re7x5vHtYXW-wooRPON7JFQHWllRx2fAcGNUMmqZlUsYfVKtyrWSjqakhwrWpuZFSA2hoYkaX6GKeOzr7FoyfxM4GN8SVImeElXELh9iVz13KWe-dacXoul66D0FAJK3ErJWAZEkrQSOJziQ_pneN-xv9D-sHBExuQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818531990</pqid></control><display><type>article</type><title>Real-time running workouts monitoring using Cloud–Edge computing</title><source>Springer Nature - Complete Springer Journals</source><creator>Avram, Maria-Ruxandra ; Pop, Florin</creator><creatorcontrib>Avram, Maria-Ruxandra ; Pop, Florin</creatorcontrib><description>In a world of ever-growing technology where smartwatches are becoming more and more widespread, we introduced an application that can attach a personal running coach on one’s wrist. We developed a highly scalable model that takes input from real coaches, conveys it into a running training on a watch, analyzes the running performance, and gives real-time text and haptic feedback based on it. Using cloud technologies, we came up with a solution that provides end-to-end connectivity between a smartwatch and a coach or user. We empower people to track down their workouts and physical profiles easily and to connect with their trainers using a standard, interactive dashboard. The solution is presented in this paper.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06675-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Cloud computing ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Edge computing ; Feedback ; Haptics ; Heart rate ; Image Processing and Computer Vision ; Physical fitness ; Probability and Statistics in Computer Science ; Real time ; S.I.: IoT-based Health Monitoring System ; Smartwatches ; Social distancing ; Special Issue on Neural Computing for IOT based Intelligent Healthcare Systems ; Wearable computers ; Wrist</subject><ispartof>Neural computing & applications, 2023-07, Vol.35 (19), p.13803-13822</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1009c108f53c9ab92083d80bbf8aa007cfc2dcabd3e700bb7e79eaad00d0b9ea3</citedby><cites>FETCH-LOGICAL-c319t-1009c108f53c9ab92083d80bbf8aa007cfc2dcabd3e700bb7e79eaad00d0b9ea3</cites><orcidid>0000-0002-4566-1545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-021-06675-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-021-06675-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Avram, Maria-Ruxandra</creatorcontrib><creatorcontrib>Pop, Florin</creatorcontrib><title>Real-time running workouts monitoring using Cloud–Edge computing</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>In a world of ever-growing technology where smartwatches are becoming more and more widespread, we introduced an application that can attach a personal running coach on one’s wrist. We developed a highly scalable model that takes input from real coaches, conveys it into a running training on a watch, analyzes the running performance, and gives real-time text and haptic feedback based on it. Using cloud technologies, we came up with a solution that provides end-to-end connectivity between a smartwatch and a coach or user. We empower people to track down their workouts and physical profiles easily and to connect with their trainers using a standard, interactive dashboard. The solution is presented in this paper.</description><subject>Artificial Intelligence</subject><subject>Cloud computing</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Edge computing</subject><subject>Feedback</subject><subject>Haptics</subject><subject>Heart rate</subject><subject>Image Processing and Computer Vision</subject><subject>Physical fitness</subject><subject>Probability and Statistics in Computer Science</subject><subject>Real time</subject><subject>S.I.: IoT-based Health Monitoring System</subject><subject>Smartwatches</subject><subject>Social distancing</subject><subject>Special Issue on Neural Computing for IOT based Intelligent Healthcare Systems</subject><subject>Wearable computers</subject><subject>Wrist</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtKxDAUDaLgOPoDrgquozdNH8lSh_EBA4LoOqRJOnScNjVpEHf-g3_ol5hQwZ2L--Dce-7jIHRO4JIA1FceoMwJhmRVVZeYHqAFKSjFFEp2iBbAi1Qq6DE68X4HAEXFygW6eTJyj6euN5kLw9AN2-zdulcbJp_1dugm6xIWfPKrvQ36-_NrrbcmU7YfwxThU3TUyr03Z79xiV5u18-re7x5vHtYXW-wooRPON7JFQHWllRx2fAcGNUMmqZlUsYfVKtyrWSjqakhwrWpuZFSA2hoYkaX6GKeOzr7FoyfxM4GN8SVImeElXELh9iVz13KWe-dacXoul66D0FAJK3ErJWAZEkrQSOJziQ_pneN-xv9D-sHBExuQw</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Avram, Maria-Ruxandra</creator><creator>Pop, Florin</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4566-1545</orcidid></search><sort><creationdate>20230701</creationdate><title>Real-time running workouts monitoring using Cloud–Edge computing</title><author>Avram, Maria-Ruxandra ; Pop, Florin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1009c108f53c9ab92083d80bbf8aa007cfc2dcabd3e700bb7e79eaad00d0b9ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Cloud computing</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Edge computing</topic><topic>Feedback</topic><topic>Haptics</topic><topic>Heart rate</topic><topic>Image Processing and Computer Vision</topic><topic>Physical fitness</topic><topic>Probability and Statistics in Computer Science</topic><topic>Real time</topic><topic>S.I.: IoT-based Health Monitoring System</topic><topic>Smartwatches</topic><topic>Social distancing</topic><topic>Special Issue on Neural Computing for IOT based Intelligent Healthcare Systems</topic><topic>Wearable computers</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avram, Maria-Ruxandra</creatorcontrib><creatorcontrib>Pop, Florin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avram, Maria-Ruxandra</au><au>Pop, Florin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time running workouts monitoring using Cloud–Edge computing</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>19</issue><spage>13803</spage><epage>13822</epage><pages>13803-13822</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In a world of ever-growing technology where smartwatches are becoming more and more widespread, we introduced an application that can attach a personal running coach on one’s wrist. We developed a highly scalable model that takes input from real coaches, conveys it into a running training on a watch, analyzes the running performance, and gives real-time text and haptic feedback based on it. Using cloud technologies, we came up with a solution that provides end-to-end connectivity between a smartwatch and a coach or user. We empower people to track down their workouts and physical profiles easily and to connect with their trainers using a standard, interactive dashboard. The solution is presented in this paper.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06675-3</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4566-1545</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2023-07, Vol.35 (19), p.13803-13822 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2818531990 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial Intelligence Cloud computing Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Edge computing Feedback Haptics Heart rate Image Processing and Computer Vision Physical fitness Probability and Statistics in Computer Science Real time S.I.: IoT-based Health Monitoring System Smartwatches Social distancing Special Issue on Neural Computing for IOT based Intelligent Healthcare Systems Wearable computers Wrist |
title | Real-time running workouts monitoring using Cloud–Edge computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20running%20workouts%20monitoring%20using%20Cloud%E2%80%93Edge%20computing&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Avram,%20Maria-Ruxandra&rft.date=2023-07-01&rft.volume=35&rft.issue=19&rft.spage=13803&rft.epage=13822&rft.pages=13803-13822&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06675-3&rft_dat=%3Cproquest_cross%3E2818531990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818531990&rft_id=info:pmid/&rfr_iscdi=true |