Real-time running workouts monitoring using Cloud–Edge computing

In a world of ever-growing technology where smartwatches are becoming more and more widespread, we introduced an application that can attach a personal running coach on one’s wrist. We developed a highly scalable model that takes input from real coaches, conveys it into a running training on a watch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2023-07, Vol.35 (19), p.13803-13822
Hauptverfasser: Avram, Maria-Ruxandra, Pop, Florin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13822
container_issue 19
container_start_page 13803
container_title Neural computing & applications
container_volume 35
creator Avram, Maria-Ruxandra
Pop, Florin
description In a world of ever-growing technology where smartwatches are becoming more and more widespread, we introduced an application that can attach a personal running coach on one’s wrist. We developed a highly scalable model that takes input from real coaches, conveys it into a running training on a watch, analyzes the running performance, and gives real-time text and haptic feedback based on it. Using cloud technologies, we came up with a solution that provides end-to-end connectivity between a smartwatch and a coach or user. We empower people to track down their workouts and physical profiles easily and to connect with their trainers using a standard, interactive dashboard. The solution is presented in this paper.
doi_str_mv 10.1007/s00521-021-06675-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2818531990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818531990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1009c108f53c9ab92083d80bbf8aa007cfc2dcabd3e700bb7e79eaad00d0b9ea3</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoDrgquozdNH8lSh_EBA4LoOqRJOnScNjVpEHf-g3_ol5hQwZ2L--Dce-7jIHRO4JIA1FceoMwJhmRVVZeYHqAFKSjFFEp2iBbAi1Qq6DE68X4HAEXFygW6eTJyj6euN5kLw9AN2-zdulcbJp_1dugm6xIWfPKrvQ36-_NrrbcmU7YfwxThU3TUyr03Z79xiV5u18-re7x5vHtYXW-wooRPON7JFQHWllRx2fAcGNUMmqZlUsYfVKtyrWSjqakhwrWpuZFSA2hoYkaX6GKeOzr7FoyfxM4GN8SVImeElXELh9iVz13KWe-dacXoul66D0FAJK3ErJWAZEkrQSOJziQ_pneN-xv9D-sHBExuQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818531990</pqid></control><display><type>article</type><title>Real-time running workouts monitoring using Cloud–Edge computing</title><source>Springer Nature - Complete Springer Journals</source><creator>Avram, Maria-Ruxandra ; Pop, Florin</creator><creatorcontrib>Avram, Maria-Ruxandra ; Pop, Florin</creatorcontrib><description>In a world of ever-growing technology where smartwatches are becoming more and more widespread, we introduced an application that can attach a personal running coach on one’s wrist. We developed a highly scalable model that takes input from real coaches, conveys it into a running training on a watch, analyzes the running performance, and gives real-time text and haptic feedback based on it. Using cloud technologies, we came up with a solution that provides end-to-end connectivity between a smartwatch and a coach or user. We empower people to track down their workouts and physical profiles easily and to connect with their trainers using a standard, interactive dashboard. The solution is presented in this paper.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06675-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Cloud computing ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Edge computing ; Feedback ; Haptics ; Heart rate ; Image Processing and Computer Vision ; Physical fitness ; Probability and Statistics in Computer Science ; Real time ; S.I.: IoT-based Health Monitoring System ; Smartwatches ; Social distancing ; Special Issue on Neural Computing for IOT based Intelligent Healthcare Systems ; Wearable computers ; Wrist</subject><ispartof>Neural computing &amp; applications, 2023-07, Vol.35 (19), p.13803-13822</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1009c108f53c9ab92083d80bbf8aa007cfc2dcabd3e700bb7e79eaad00d0b9ea3</citedby><cites>FETCH-LOGICAL-c319t-1009c108f53c9ab92083d80bbf8aa007cfc2dcabd3e700bb7e79eaad00d0b9ea3</cites><orcidid>0000-0002-4566-1545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-021-06675-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-021-06675-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Avram, Maria-Ruxandra</creatorcontrib><creatorcontrib>Pop, Florin</creatorcontrib><title>Real-time running workouts monitoring using Cloud–Edge computing</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>In a world of ever-growing technology where smartwatches are becoming more and more widespread, we introduced an application that can attach a personal running coach on one’s wrist. We developed a highly scalable model that takes input from real coaches, conveys it into a running training on a watch, analyzes the running performance, and gives real-time text and haptic feedback based on it. Using cloud technologies, we came up with a solution that provides end-to-end connectivity between a smartwatch and a coach or user. We empower people to track down their workouts and physical profiles easily and to connect with their trainers using a standard, interactive dashboard. The solution is presented in this paper.</description><subject>Artificial Intelligence</subject><subject>Cloud computing</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Edge computing</subject><subject>Feedback</subject><subject>Haptics</subject><subject>Heart rate</subject><subject>Image Processing and Computer Vision</subject><subject>Physical fitness</subject><subject>Probability and Statistics in Computer Science</subject><subject>Real time</subject><subject>S.I.: IoT-based Health Monitoring System</subject><subject>Smartwatches</subject><subject>Social distancing</subject><subject>Special Issue on Neural Computing for IOT based Intelligent Healthcare Systems</subject><subject>Wearable computers</subject><subject>Wrist</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtKxDAUDaLgOPoDrgquozdNH8lSh_EBA4LoOqRJOnScNjVpEHf-g3_ol5hQwZ2L--Dce-7jIHRO4JIA1FceoMwJhmRVVZeYHqAFKSjFFEp2iBbAi1Qq6DE68X4HAEXFygW6eTJyj6euN5kLw9AN2-zdulcbJp_1dugm6xIWfPKrvQ36-_NrrbcmU7YfwxThU3TUyr03Z79xiV5u18-re7x5vHtYXW-wooRPON7JFQHWllRx2fAcGNUMmqZlUsYfVKtyrWSjqakhwrWpuZFSA2hoYkaX6GKeOzr7FoyfxM4GN8SVImeElXELh9iVz13KWe-dacXoul66D0FAJK3ErJWAZEkrQSOJziQ_pneN-xv9D-sHBExuQw</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Avram, Maria-Ruxandra</creator><creator>Pop, Florin</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4566-1545</orcidid></search><sort><creationdate>20230701</creationdate><title>Real-time running workouts monitoring using Cloud–Edge computing</title><author>Avram, Maria-Ruxandra ; Pop, Florin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1009c108f53c9ab92083d80bbf8aa007cfc2dcabd3e700bb7e79eaad00d0b9ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Cloud computing</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Edge computing</topic><topic>Feedback</topic><topic>Haptics</topic><topic>Heart rate</topic><topic>Image Processing and Computer Vision</topic><topic>Physical fitness</topic><topic>Probability and Statistics in Computer Science</topic><topic>Real time</topic><topic>S.I.: IoT-based Health Monitoring System</topic><topic>Smartwatches</topic><topic>Social distancing</topic><topic>Special Issue on Neural Computing for IOT based Intelligent Healthcare Systems</topic><topic>Wearable computers</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avram, Maria-Ruxandra</creatorcontrib><creatorcontrib>Pop, Florin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avram, Maria-Ruxandra</au><au>Pop, Florin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time running workouts monitoring using Cloud–Edge computing</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>19</issue><spage>13803</spage><epage>13822</epage><pages>13803-13822</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In a world of ever-growing technology where smartwatches are becoming more and more widespread, we introduced an application that can attach a personal running coach on one’s wrist. We developed a highly scalable model that takes input from real coaches, conveys it into a running training on a watch, analyzes the running performance, and gives real-time text and haptic feedback based on it. Using cloud technologies, we came up with a solution that provides end-to-end connectivity between a smartwatch and a coach or user. We empower people to track down their workouts and physical profiles easily and to connect with their trainers using a standard, interactive dashboard. The solution is presented in this paper.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06675-3</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4566-1545</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2023-07, Vol.35 (19), p.13803-13822
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2818531990
source Springer Nature - Complete Springer Journals
subjects Artificial Intelligence
Cloud computing
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Edge computing
Feedback
Haptics
Heart rate
Image Processing and Computer Vision
Physical fitness
Probability and Statistics in Computer Science
Real time
S.I.: IoT-based Health Monitoring System
Smartwatches
Social distancing
Special Issue on Neural Computing for IOT based Intelligent Healthcare Systems
Wearable computers
Wrist
title Real-time running workouts monitoring using Cloud–Edge computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20running%20workouts%20monitoring%20using%20Cloud%E2%80%93Edge%20computing&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Avram,%20Maria-Ruxandra&rft.date=2023-07-01&rft.volume=35&rft.issue=19&rft.spage=13803&rft.epage=13822&rft.pages=13803-13822&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06675-3&rft_dat=%3Cproquest_cross%3E2818531990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818531990&rft_id=info:pmid/&rfr_iscdi=true