Crisis Assessment Oriented Influence Maximization in Social Networks

Influence maximization (IM) aims to find a subset of k nodes that can maximize the final active node set under an information diffusion model. With the development and popularity of social networks, the IM problem plays an essential role in various applications, such as public opinion analysis, vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational social systems 2023-06, Vol.10 (3), p.1381-1393
Hauptverfasser: Niu, Weinan, Tan, Wenan, Jia, Wei, Zhao, Lu, Xie, Na
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1393
container_issue 3
container_start_page 1381
container_title IEEE transactions on computational social systems
container_volume 10
creator Niu, Weinan
Tan, Wenan
Jia, Wei
Zhao, Lu
Xie, Na
description Influence maximization (IM) aims to find a subset of k nodes that can maximize the final active node set under an information diffusion model. With the development and popularity of social networks, the IM problem plays an essential role in various applications, such as public opinion analysis, viral marketing, and rumor early warning. However, most of the existing IM solutions have not accessed the risk of negative information from nodes in the future. In reality, a company may face economic loss when negative information breaks out of its spokesman. Therefore, a crisis assessment oriented and topic-based IM problem (TIM-CA) is proposed, which is utilized to model the IM problem by considering the crisis assessment (CA) and topics of users. To solve this problem, we propose a maximum influence arborescence model-based algorithm for TIM-CA, namely, MIA-TIM-CA. The proposed algorithm consists of crisis degree calculation, topic relevance calculation, and influence spread evaluation. More importantly, as for crisis degree calculation, it considers self-, topology-, and topic-based crisis degrees for each node. At the influence spread evaluation stage, MIA-TIM-CA proposes two functions to evaluate the node's importance and node influence spread. Extensive experiments on two real-world social networks demonstrate that our MIA-TIM-CA outperforms all comparison algorithms on influence spread, crisis score, and running time.
doi_str_mv 10.1109/TCSS.2022.3166182
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2818367336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9762464</ieee_id><sourcerecordid>2818367336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-c4ab4f0619a4c9b98857d1b9986dc49af91cbf9b73cffcf6ea54c9cd4f2cd7de3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGp_gLgJuJ6a1ySTZRlfhWoXreAuZDI3kNrO1GSKj1_vDC2uzl1851z4ELqmZEop0XfrcrWaMsLYlFMpacHO0IhxxTMllDwfbqYzzcT7JZqktCGEUJbnipERui9jSCHhWUqQ0g6aDi9j6ANqPG_89gCNA_xiv8Mu_NoutA0ODV61LtgtfoXuq40f6QpdeLtNMDnlGL09PqzL52yxfJqXs0XmmMi7zAlbCU8k1VY4XemiyFVNK60LWTuhrdfUVV5XijvvnZdg855ztfDM1aoGPka3x919bD8PkDqzaQ-x6V8aVtCCS8W57Cl6pFxsU4rgzT6GnY0_hhIz-DKDLzP4Midffefm2AkA8M9rJZmQgv8Bso1n1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818367336</pqid></control><display><type>article</type><title>Crisis Assessment Oriented Influence Maximization in Social Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Niu, Weinan ; Tan, Wenan ; Jia, Wei ; Zhao, Lu ; Xie, Na</creator><creatorcontrib>Niu, Weinan ; Tan, Wenan ; Jia, Wei ; Zhao, Lu ; Xie, Na</creatorcontrib><description>Influence maximization (IM) aims to find a subset of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;k &lt;/tex-math&gt;&lt;/inline-formula&gt; nodes that can maximize the final active node set under an information diffusion model. With the development and popularity of social networks, the IM problem plays an essential role in various applications, such as public opinion analysis, viral marketing, and rumor early warning. However, most of the existing IM solutions have not accessed the risk of negative information from nodes in the future. In reality, a company may face economic loss when negative information breaks out of its spokesman. Therefore, a crisis assessment oriented and topic-based IM problem (TIM-CA) is proposed, which is utilized to model the IM problem by considering the crisis assessment (CA) and topics of users. To solve this problem, we propose a maximum influence arborescence model-based algorithm for TIM-CA, namely, MIA-TIM-CA. The proposed algorithm consists of crisis degree calculation, topic relevance calculation, and influence spread evaluation. More importantly, as for crisis degree calculation, it considers self-, topology-, and topic-based crisis degrees for each node. At the influence spread evaluation stage, MIA-TIM-CA proposes two functions to evaluate the node's importance and node influence spread. Extensive experiments on two real-world social networks demonstrate that our MIA-TIM-CA outperforms all comparison algorithms on influence spread, crisis score, and running time.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2022.3166182</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Companies ; Crisis degree ; Economic impact ; Greedy algorithms ; Heuristic algorithms ; Indexes ; influence evaluation ; influence maximization (IM) ; Information dissemination ; Maximization ; Network topology ; Nodes ; Optimization ; social network ; Social networking (online) ; Social networks ; topic ; Topology</subject><ispartof>IEEE transactions on computational social systems, 2023-06, Vol.10 (3), p.1381-1393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-c4ab4f0619a4c9b98857d1b9986dc49af91cbf9b73cffcf6ea54c9cd4f2cd7de3</cites><orcidid>0000-0002-3448-5427 ; 0000-0002-1250-747X ; 0000-0001-5172-359X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9762464$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9762464$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Niu, Weinan</creatorcontrib><creatorcontrib>Tan, Wenan</creatorcontrib><creatorcontrib>Jia, Wei</creatorcontrib><creatorcontrib>Zhao, Lu</creatorcontrib><creatorcontrib>Xie, Na</creatorcontrib><title>Crisis Assessment Oriented Influence Maximization in Social Networks</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>Influence maximization (IM) aims to find a subset of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;k &lt;/tex-math&gt;&lt;/inline-formula&gt; nodes that can maximize the final active node set under an information diffusion model. With the development and popularity of social networks, the IM problem plays an essential role in various applications, such as public opinion analysis, viral marketing, and rumor early warning. However, most of the existing IM solutions have not accessed the risk of negative information from nodes in the future. In reality, a company may face economic loss when negative information breaks out of its spokesman. Therefore, a crisis assessment oriented and topic-based IM problem (TIM-CA) is proposed, which is utilized to model the IM problem by considering the crisis assessment (CA) and topics of users. To solve this problem, we propose a maximum influence arborescence model-based algorithm for TIM-CA, namely, MIA-TIM-CA. The proposed algorithm consists of crisis degree calculation, topic relevance calculation, and influence spread evaluation. More importantly, as for crisis degree calculation, it considers self-, topology-, and topic-based crisis degrees for each node. At the influence spread evaluation stage, MIA-TIM-CA proposes two functions to evaluate the node's importance and node influence spread. Extensive experiments on two real-world social networks demonstrate that our MIA-TIM-CA outperforms all comparison algorithms on influence spread, crisis score, and running time.</description><subject>Algorithms</subject><subject>Companies</subject><subject>Crisis degree</subject><subject>Economic impact</subject><subject>Greedy algorithms</subject><subject>Heuristic algorithms</subject><subject>Indexes</subject><subject>influence evaluation</subject><subject>influence maximization (IM)</subject><subject>Information dissemination</subject><subject>Maximization</subject><subject>Network topology</subject><subject>Nodes</subject><subject>Optimization</subject><subject>social network</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>topic</subject><subject>Topology</subject><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWGp_gLgJuJ6a1ySTZRlfhWoXreAuZDI3kNrO1GSKj1_vDC2uzl1851z4ELqmZEop0XfrcrWaMsLYlFMpacHO0IhxxTMllDwfbqYzzcT7JZqktCGEUJbnipERui9jSCHhWUqQ0g6aDi9j6ANqPG_89gCNA_xiv8Mu_NoutA0ODV61LtgtfoXuq40f6QpdeLtNMDnlGL09PqzL52yxfJqXs0XmmMi7zAlbCU8k1VY4XemiyFVNK60LWTuhrdfUVV5XijvvnZdg855ztfDM1aoGPka3x919bD8PkDqzaQ-x6V8aVtCCS8W57Cl6pFxsU4rgzT6GnY0_hhIz-DKDLzP4Midffefm2AkA8M9rJZmQgv8Bso1n1A</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Niu, Weinan</creator><creator>Tan, Wenan</creator><creator>Jia, Wei</creator><creator>Zhao, Lu</creator><creator>Xie, Na</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3448-5427</orcidid><orcidid>https://orcid.org/0000-0002-1250-747X</orcidid><orcidid>https://orcid.org/0000-0001-5172-359X</orcidid></search><sort><creationdate>20230601</creationdate><title>Crisis Assessment Oriented Influence Maximization in Social Networks</title><author>Niu, Weinan ; Tan, Wenan ; Jia, Wei ; Zhao, Lu ; Xie, Na</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-c4ab4f0619a4c9b98857d1b9986dc49af91cbf9b73cffcf6ea54c9cd4f2cd7de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Companies</topic><topic>Crisis degree</topic><topic>Economic impact</topic><topic>Greedy algorithms</topic><topic>Heuristic algorithms</topic><topic>Indexes</topic><topic>influence evaluation</topic><topic>influence maximization (IM)</topic><topic>Information dissemination</topic><topic>Maximization</topic><topic>Network topology</topic><topic>Nodes</topic><topic>Optimization</topic><topic>social network</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>topic</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Weinan</creatorcontrib><creatorcontrib>Tan, Wenan</creatorcontrib><creatorcontrib>Jia, Wei</creatorcontrib><creatorcontrib>Zhao, Lu</creatorcontrib><creatorcontrib>Xie, Na</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Niu, Weinan</au><au>Tan, Wenan</au><au>Jia, Wei</au><au>Zhao, Lu</au><au>Xie, Na</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crisis Assessment Oriented Influence Maximization in Social Networks</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>10</volume><issue>3</issue><spage>1381</spage><epage>1393</epage><pages>1381-1393</pages><issn>2329-924X</issn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>Influence maximization (IM) aims to find a subset of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;k &lt;/tex-math&gt;&lt;/inline-formula&gt; nodes that can maximize the final active node set under an information diffusion model. With the development and popularity of social networks, the IM problem plays an essential role in various applications, such as public opinion analysis, viral marketing, and rumor early warning. However, most of the existing IM solutions have not accessed the risk of negative information from nodes in the future. In reality, a company may face economic loss when negative information breaks out of its spokesman. Therefore, a crisis assessment oriented and topic-based IM problem (TIM-CA) is proposed, which is utilized to model the IM problem by considering the crisis assessment (CA) and topics of users. To solve this problem, we propose a maximum influence arborescence model-based algorithm for TIM-CA, namely, MIA-TIM-CA. The proposed algorithm consists of crisis degree calculation, topic relevance calculation, and influence spread evaluation. More importantly, as for crisis degree calculation, it considers self-, topology-, and topic-based crisis degrees for each node. At the influence spread evaluation stage, MIA-TIM-CA proposes two functions to evaluate the node's importance and node influence spread. Extensive experiments on two real-world social networks demonstrate that our MIA-TIM-CA outperforms all comparison algorithms on influence spread, crisis score, and running time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCSS.2022.3166182</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3448-5427</orcidid><orcidid>https://orcid.org/0000-0002-1250-747X</orcidid><orcidid>https://orcid.org/0000-0001-5172-359X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-924X
ispartof IEEE transactions on computational social systems, 2023-06, Vol.10 (3), p.1381-1393
issn 2329-924X
2373-7476
language eng
recordid cdi_proquest_journals_2818367336
source IEEE Electronic Library (IEL)
subjects Algorithms
Companies
Crisis degree
Economic impact
Greedy algorithms
Heuristic algorithms
Indexes
influence evaluation
influence maximization (IM)
Information dissemination
Maximization
Network topology
Nodes
Optimization
social network
Social networking (online)
Social networks
topic
Topology
title Crisis Assessment Oriented Influence Maximization in Social Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crisis%20Assessment%20Oriented%20Influence%20Maximization%20in%20Social%20Networks&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Niu,%20Weinan&rft.date=2023-06-01&rft.volume=10&rft.issue=3&rft.spage=1381&rft.epage=1393&rft.pages=1381-1393&rft.issn=2329-924X&rft.eissn=2373-7476&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2022.3166182&rft_dat=%3Cproquest_RIE%3E2818367336%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818367336&rft_id=info:pmid/&rft_ieee_id=9762464&rfr_iscdi=true