Crisis Assessment Oriented Influence Maximization in Social Networks
Influence maximization (IM) aims to find a subset of k nodes that can maximize the final active node set under an information diffusion model. With the development and popularity of social networks, the IM problem plays an essential role in various applications, such as public opinion analysis, vi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computational social systems 2023-06, Vol.10 (3), p.1381-1393 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1393 |
---|---|
container_issue | 3 |
container_start_page | 1381 |
container_title | IEEE transactions on computational social systems |
container_volume | 10 |
creator | Niu, Weinan Tan, Wenan Jia, Wei Zhao, Lu Xie, Na |
description | Influence maximization (IM) aims to find a subset of k nodes that can maximize the final active node set under an information diffusion model. With the development and popularity of social networks, the IM problem plays an essential role in various applications, such as public opinion analysis, viral marketing, and rumor early warning. However, most of the existing IM solutions have not accessed the risk of negative information from nodes in the future. In reality, a company may face economic loss when negative information breaks out of its spokesman. Therefore, a crisis assessment oriented and topic-based IM problem (TIM-CA) is proposed, which is utilized to model the IM problem by considering the crisis assessment (CA) and topics of users. To solve this problem, we propose a maximum influence arborescence model-based algorithm for TIM-CA, namely, MIA-TIM-CA. The proposed algorithm consists of crisis degree calculation, topic relevance calculation, and influence spread evaluation. More importantly, as for crisis degree calculation, it considers self-, topology-, and topic-based crisis degrees for each node. At the influence spread evaluation stage, MIA-TIM-CA proposes two functions to evaluate the node's importance and node influence spread. Extensive experiments on two real-world social networks demonstrate that our MIA-TIM-CA outperforms all comparison algorithms on influence spread, crisis score, and running time. |
doi_str_mv | 10.1109/TCSS.2022.3166182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2818367336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9762464</ieee_id><sourcerecordid>2818367336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-c4ab4f0619a4c9b98857d1b9986dc49af91cbf9b73cffcf6ea54c9cd4f2cd7de3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGp_gLgJuJ6a1ySTZRlfhWoXreAuZDI3kNrO1GSKj1_vDC2uzl1851z4ELqmZEop0XfrcrWaMsLYlFMpacHO0IhxxTMllDwfbqYzzcT7JZqktCGEUJbnipERui9jSCHhWUqQ0g6aDi9j6ANqPG_89gCNA_xiv8Mu_NoutA0ODV61LtgtfoXuq40f6QpdeLtNMDnlGL09PqzL52yxfJqXs0XmmMi7zAlbCU8k1VY4XemiyFVNK60LWTuhrdfUVV5XijvvnZdg855ztfDM1aoGPka3x919bD8PkDqzaQ-x6V8aVtCCS8W57Cl6pFxsU4rgzT6GnY0_hhIz-DKDLzP4Midffefm2AkA8M9rJZmQgv8Bso1n1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818367336</pqid></control><display><type>article</type><title>Crisis Assessment Oriented Influence Maximization in Social Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Niu, Weinan ; Tan, Wenan ; Jia, Wei ; Zhao, Lu ; Xie, Na</creator><creatorcontrib>Niu, Weinan ; Tan, Wenan ; Jia, Wei ; Zhao, Lu ; Xie, Na</creatorcontrib><description>Influence maximization (IM) aims to find a subset of <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> nodes that can maximize the final active node set under an information diffusion model. With the development and popularity of social networks, the IM problem plays an essential role in various applications, such as public opinion analysis, viral marketing, and rumor early warning. However, most of the existing IM solutions have not accessed the risk of negative information from nodes in the future. In reality, a company may face economic loss when negative information breaks out of its spokesman. Therefore, a crisis assessment oriented and topic-based IM problem (TIM-CA) is proposed, which is utilized to model the IM problem by considering the crisis assessment (CA) and topics of users. To solve this problem, we propose a maximum influence arborescence model-based algorithm for TIM-CA, namely, MIA-TIM-CA. The proposed algorithm consists of crisis degree calculation, topic relevance calculation, and influence spread evaluation. More importantly, as for crisis degree calculation, it considers self-, topology-, and topic-based crisis degrees for each node. At the influence spread evaluation stage, MIA-TIM-CA proposes two functions to evaluate the node's importance and node influence spread. Extensive experiments on two real-world social networks demonstrate that our MIA-TIM-CA outperforms all comparison algorithms on influence spread, crisis score, and running time.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2022.3166182</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Companies ; Crisis degree ; Economic impact ; Greedy algorithms ; Heuristic algorithms ; Indexes ; influence evaluation ; influence maximization (IM) ; Information dissemination ; Maximization ; Network topology ; Nodes ; Optimization ; social network ; Social networking (online) ; Social networks ; topic ; Topology</subject><ispartof>IEEE transactions on computational social systems, 2023-06, Vol.10 (3), p.1381-1393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-c4ab4f0619a4c9b98857d1b9986dc49af91cbf9b73cffcf6ea54c9cd4f2cd7de3</cites><orcidid>0000-0002-3448-5427 ; 0000-0002-1250-747X ; 0000-0001-5172-359X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9762464$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9762464$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Niu, Weinan</creatorcontrib><creatorcontrib>Tan, Wenan</creatorcontrib><creatorcontrib>Jia, Wei</creatorcontrib><creatorcontrib>Zhao, Lu</creatorcontrib><creatorcontrib>Xie, Na</creatorcontrib><title>Crisis Assessment Oriented Influence Maximization in Social Networks</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>Influence maximization (IM) aims to find a subset of <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> nodes that can maximize the final active node set under an information diffusion model. With the development and popularity of social networks, the IM problem plays an essential role in various applications, such as public opinion analysis, viral marketing, and rumor early warning. However, most of the existing IM solutions have not accessed the risk of negative information from nodes in the future. In reality, a company may face economic loss when negative information breaks out of its spokesman. Therefore, a crisis assessment oriented and topic-based IM problem (TIM-CA) is proposed, which is utilized to model the IM problem by considering the crisis assessment (CA) and topics of users. To solve this problem, we propose a maximum influence arborescence model-based algorithm for TIM-CA, namely, MIA-TIM-CA. The proposed algorithm consists of crisis degree calculation, topic relevance calculation, and influence spread evaluation. More importantly, as for crisis degree calculation, it considers self-, topology-, and topic-based crisis degrees for each node. At the influence spread evaluation stage, MIA-TIM-CA proposes two functions to evaluate the node's importance and node influence spread. Extensive experiments on two real-world social networks demonstrate that our MIA-TIM-CA outperforms all comparison algorithms on influence spread, crisis score, and running time.</description><subject>Algorithms</subject><subject>Companies</subject><subject>Crisis degree</subject><subject>Economic impact</subject><subject>Greedy algorithms</subject><subject>Heuristic algorithms</subject><subject>Indexes</subject><subject>influence evaluation</subject><subject>influence maximization (IM)</subject><subject>Information dissemination</subject><subject>Maximization</subject><subject>Network topology</subject><subject>Nodes</subject><subject>Optimization</subject><subject>social network</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>topic</subject><subject>Topology</subject><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWGp_gLgJuJ6a1ySTZRlfhWoXreAuZDI3kNrO1GSKj1_vDC2uzl1851z4ELqmZEop0XfrcrWaMsLYlFMpacHO0IhxxTMllDwfbqYzzcT7JZqktCGEUJbnipERui9jSCHhWUqQ0g6aDi9j6ANqPG_89gCNA_xiv8Mu_NoutA0ODV61LtgtfoXuq40f6QpdeLtNMDnlGL09PqzL52yxfJqXs0XmmMi7zAlbCU8k1VY4XemiyFVNK60LWTuhrdfUVV5XijvvnZdg855ztfDM1aoGPka3x919bD8PkDqzaQ-x6V8aVtCCS8W57Cl6pFxsU4rgzT6GnY0_hhIz-DKDLzP4Midffefm2AkA8M9rJZmQgv8Bso1n1A</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Niu, Weinan</creator><creator>Tan, Wenan</creator><creator>Jia, Wei</creator><creator>Zhao, Lu</creator><creator>Xie, Na</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3448-5427</orcidid><orcidid>https://orcid.org/0000-0002-1250-747X</orcidid><orcidid>https://orcid.org/0000-0001-5172-359X</orcidid></search><sort><creationdate>20230601</creationdate><title>Crisis Assessment Oriented Influence Maximization in Social Networks</title><author>Niu, Weinan ; Tan, Wenan ; Jia, Wei ; Zhao, Lu ; Xie, Na</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-c4ab4f0619a4c9b98857d1b9986dc49af91cbf9b73cffcf6ea54c9cd4f2cd7de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Companies</topic><topic>Crisis degree</topic><topic>Economic impact</topic><topic>Greedy algorithms</topic><topic>Heuristic algorithms</topic><topic>Indexes</topic><topic>influence evaluation</topic><topic>influence maximization (IM)</topic><topic>Information dissemination</topic><topic>Maximization</topic><topic>Network topology</topic><topic>Nodes</topic><topic>Optimization</topic><topic>social network</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>topic</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Weinan</creatorcontrib><creatorcontrib>Tan, Wenan</creatorcontrib><creatorcontrib>Jia, Wei</creatorcontrib><creatorcontrib>Zhao, Lu</creatorcontrib><creatorcontrib>Xie, Na</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Niu, Weinan</au><au>Tan, Wenan</au><au>Jia, Wei</au><au>Zhao, Lu</au><au>Xie, Na</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crisis Assessment Oriented Influence Maximization in Social Networks</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>10</volume><issue>3</issue><spage>1381</spage><epage>1393</epage><pages>1381-1393</pages><issn>2329-924X</issn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>Influence maximization (IM) aims to find a subset of <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> nodes that can maximize the final active node set under an information diffusion model. With the development and popularity of social networks, the IM problem plays an essential role in various applications, such as public opinion analysis, viral marketing, and rumor early warning. However, most of the existing IM solutions have not accessed the risk of negative information from nodes in the future. In reality, a company may face economic loss when negative information breaks out of its spokesman. Therefore, a crisis assessment oriented and topic-based IM problem (TIM-CA) is proposed, which is utilized to model the IM problem by considering the crisis assessment (CA) and topics of users. To solve this problem, we propose a maximum influence arborescence model-based algorithm for TIM-CA, namely, MIA-TIM-CA. The proposed algorithm consists of crisis degree calculation, topic relevance calculation, and influence spread evaluation. More importantly, as for crisis degree calculation, it considers self-, topology-, and topic-based crisis degrees for each node. At the influence spread evaluation stage, MIA-TIM-CA proposes two functions to evaluate the node's importance and node influence spread. Extensive experiments on two real-world social networks demonstrate that our MIA-TIM-CA outperforms all comparison algorithms on influence spread, crisis score, and running time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCSS.2022.3166182</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3448-5427</orcidid><orcidid>https://orcid.org/0000-0002-1250-747X</orcidid><orcidid>https://orcid.org/0000-0001-5172-359X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-924X |
ispartof | IEEE transactions on computational social systems, 2023-06, Vol.10 (3), p.1381-1393 |
issn | 2329-924X 2373-7476 |
language | eng |
recordid | cdi_proquest_journals_2818367336 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Companies Crisis degree Economic impact Greedy algorithms Heuristic algorithms Indexes influence evaluation influence maximization (IM) Information dissemination Maximization Network topology Nodes Optimization social network Social networking (online) Social networks topic Topology |
title | Crisis Assessment Oriented Influence Maximization in Social Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crisis%20Assessment%20Oriented%20Influence%20Maximization%20in%20Social%20Networks&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Niu,%20Weinan&rft.date=2023-06-01&rft.volume=10&rft.issue=3&rft.spage=1381&rft.epage=1393&rft.pages=1381-1393&rft.issn=2329-924X&rft.eissn=2373-7476&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2022.3166182&rft_dat=%3Cproquest_RIE%3E2818367336%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818367336&rft_id=info:pmid/&rft_ieee_id=9762464&rfr_iscdi=true |