A Promising De-ionized Water Cooling Based ERIP Bushing-II: Cooling Mechanism and Effect of Parameters

Overheating has become a key factor that threatens the safe operation of the epoxy resin impregnated paper (ERIP) HVDC bushing and restricts its engineering application. The de-ionized water cooling based ERIP (DIWC-ERIP) bushing utilizes diffusion and convective heat transport to achieve low temper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2023-06, Vol.38 (3), p.1-9
Hauptverfasser: Lu, Binxian, Yue, Zhanbing, Li, Rui, Liu, Shan, Hou, Junyi, Wang, Hang, Zhou, Jianhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 3
container_start_page 1
container_title IEEE transactions on power delivery
container_volume 38
creator Lu, Binxian
Yue, Zhanbing
Li, Rui
Liu, Shan
Hou, Junyi
Wang, Hang
Zhou, Jianhui
description Overheating has become a key factor that threatens the safe operation of the epoxy resin impregnated paper (ERIP) HVDC bushing and restricts its engineering application. The de-ionized water cooling based ERIP (DIWC-ERIP) bushing utilizes diffusion and convective heat transport to achieve low temperature distribution in the DIWC-ERIP bushing. In this manuscript, the temperature, heat flux density and the heat flux distribution of the DIWC-ERIP bushing are analyzed and the cooling mechanism is discussed. The heat flux density in the current carrying conductor (CCC) is mainly in axial direction. In the ERIP it is mainly in negative radial direction in oil tank side, and in positive radial direction in flange area and air box side of the bushing. The effect of the flow rate and temperature at inlet of de-ionized water on the temperature distribution of the bushing is studied by experiments and simulations, and the simulation results are very close to the measured results. The parameters of the thermal resistance per unit length of the thermal thin layer and the radii of water tubes have little effect on the temperature distribution of the bushing. The temperature distribution of the bushing can be controlled by the temperature of water at the inlet. Due to the strong heat dissipation capacity of de-ionized water, as the flow rate is 2 L/min, the maximum temperature of the ERIP doesn't exceed 120 ℃.
doi_str_mv 10.1109/TPWRD.2022.3218777
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2818364752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9935268</ieee_id><sourcerecordid>2818364752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d2c2d9bb26b3c4035af088b144d00b5e2198b2c017da153410f37334de7c08bd3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCJxDllbSe1za1_QKQioqqoR8tJbJqqiYudHuDpcWnV00qzM7OrD6F7DAOMQTwt89ViOiBAyIASzBljF6iHBWVxQoBfoh5wnsZcMHaNbrzfAEACAnrIjKLc2ab2dfsVTXVc27b-1VW0Up120cTa7WExVj5os0WWR-O9XwcpzrLn8_pdl2vV1r6JVBtsxuiyi6yJcuVUo0ORv0VXRm29vjvNPvp8mS0nb_H84zWbjOZxSUTaxRUpSSWKggwLWiZAU2XC4wVOkgqgSDXBghekBMwqhVOaYDCUUZpUmpXAi4r20eOxd-fs9177Tm7s3rXhpCQcczpMWEqCixxdpbPeO23kztWNcj8SgzzwlP885YGnPPEMoYdjqNZanwNC0JQMOf0D4y5wBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818364752</pqid></control><display><type>article</type><title>A Promising De-ionized Water Cooling Based ERIP Bushing-II: Cooling Mechanism and Effect of Parameters</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Binxian ; Yue, Zhanbing ; Li, Rui ; Liu, Shan ; Hou, Junyi ; Wang, Hang ; Zhou, Jianhui</creator><creatorcontrib>Lu, Binxian ; Yue, Zhanbing ; Li, Rui ; Liu, Shan ; Hou, Junyi ; Wang, Hang ; Zhou, Jianhui</creatorcontrib><description>Overheating has become a key factor that threatens the safe operation of the epoxy resin impregnated paper (ERIP) HVDC bushing and restricts its engineering application. The de-ionized water cooling based ERIP (DIWC-ERIP) bushing utilizes diffusion and convective heat transport to achieve low temperature distribution in the DIWC-ERIP bushing. In this manuscript, the temperature, heat flux density and the heat flux distribution of the DIWC-ERIP bushing are analyzed and the cooling mechanism is discussed. The heat flux density in the current carrying conductor (CCC) is mainly in axial direction. In the ERIP it is mainly in negative radial direction in oil tank side, and in positive radial direction in flange area and air box side of the bushing. The effect of the flow rate and temperature at inlet of de-ionized water on the temperature distribution of the bushing is studied by experiments and simulations, and the simulation results are very close to the measured results. The parameters of the thermal resistance per unit length of the thermal thin layer and the radii of water tubes have little effect on the temperature distribution of the bushing. The temperature distribution of the bushing can be controlled by the temperature of water at the inlet. Due to the strong heat dissipation capacity of de-ionized water, as the flow rate is 2 L/min, the maximum temperature of the ERIP doesn't exceed 120 ℃.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2022.3218777</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum ; Cooling ; Cooling mechanism ; De-ionized water cooling ; Electro-thermal-fluid model ; Electron tubes ; Epoxy resins ; Flanges ; Flow velocity ; Flux density ; Heat ; Heat flux ; Heat transfer ; Heating systems ; Insulators ; Liquid cooling ; Low temperature ; Overheating ; Parameter scanning ; Parameters ; Temperature distribution ; Thermal resistance ; Tubes</subject><ispartof>IEEE transactions on power delivery, 2023-06, Vol.38 (3), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d2c2d9bb26b3c4035af088b144d00b5e2198b2c017da153410f37334de7c08bd3</citedby><cites>FETCH-LOGICAL-c295t-d2c2d9bb26b3c4035af088b144d00b5e2198b2c017da153410f37334de7c08bd3</cites><orcidid>0000-0002-7495-3512 ; 0000-0003-2122-3257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9935268$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9935268$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Binxian</creatorcontrib><creatorcontrib>Yue, Zhanbing</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Liu, Shan</creatorcontrib><creatorcontrib>Hou, Junyi</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Zhou, Jianhui</creatorcontrib><title>A Promising De-ionized Water Cooling Based ERIP Bushing-II: Cooling Mechanism and Effect of Parameters</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Overheating has become a key factor that threatens the safe operation of the epoxy resin impregnated paper (ERIP) HVDC bushing and restricts its engineering application. The de-ionized water cooling based ERIP (DIWC-ERIP) bushing utilizes diffusion and convective heat transport to achieve low temperature distribution in the DIWC-ERIP bushing. In this manuscript, the temperature, heat flux density and the heat flux distribution of the DIWC-ERIP bushing are analyzed and the cooling mechanism is discussed. The heat flux density in the current carrying conductor (CCC) is mainly in axial direction. In the ERIP it is mainly in negative radial direction in oil tank side, and in positive radial direction in flange area and air box side of the bushing. The effect of the flow rate and temperature at inlet of de-ionized water on the temperature distribution of the bushing is studied by experiments and simulations, and the simulation results are very close to the measured results. The parameters of the thermal resistance per unit length of the thermal thin layer and the radii of water tubes have little effect on the temperature distribution of the bushing. The temperature distribution of the bushing can be controlled by the temperature of water at the inlet. Due to the strong heat dissipation capacity of de-ionized water, as the flow rate is 2 L/min, the maximum temperature of the ERIP doesn't exceed 120 ℃.</description><subject>Aluminum</subject><subject>Cooling</subject><subject>Cooling mechanism</subject><subject>De-ionized water cooling</subject><subject>Electro-thermal-fluid model</subject><subject>Electron tubes</subject><subject>Epoxy resins</subject><subject>Flanges</subject><subject>Flow velocity</subject><subject>Flux density</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heating systems</subject><subject>Insulators</subject><subject>Liquid cooling</subject><subject>Low temperature</subject><subject>Overheating</subject><subject>Parameter scanning</subject><subject>Parameters</subject><subject>Temperature distribution</subject><subject>Thermal resistance</subject><subject>Tubes</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnCJxDllbSe1za1_QKQioqqoR8tJbJqqiYudHuDpcWnV00qzM7OrD6F7DAOMQTwt89ViOiBAyIASzBljF6iHBWVxQoBfoh5wnsZcMHaNbrzfAEACAnrIjKLc2ab2dfsVTXVc27b-1VW0Up120cTa7WExVj5os0WWR-O9XwcpzrLn8_pdl2vV1r6JVBtsxuiyi6yJcuVUo0ORv0VXRm29vjvNPvp8mS0nb_H84zWbjOZxSUTaxRUpSSWKggwLWiZAU2XC4wVOkgqgSDXBghekBMwqhVOaYDCUUZpUmpXAi4r20eOxd-fs9177Tm7s3rXhpCQcczpMWEqCixxdpbPeO23kztWNcj8SgzzwlP885YGnPPEMoYdjqNZanwNC0JQMOf0D4y5wBQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Lu, Binxian</creator><creator>Yue, Zhanbing</creator><creator>Li, Rui</creator><creator>Liu, Shan</creator><creator>Hou, Junyi</creator><creator>Wang, Hang</creator><creator>Zhou, Jianhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7495-3512</orcidid><orcidid>https://orcid.org/0000-0003-2122-3257</orcidid></search><sort><creationdate>20230601</creationdate><title>A Promising De-ionized Water Cooling Based ERIP Bushing-II: Cooling Mechanism and Effect of Parameters</title><author>Lu, Binxian ; Yue, Zhanbing ; Li, Rui ; Liu, Shan ; Hou, Junyi ; Wang, Hang ; Zhou, Jianhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d2c2d9bb26b3c4035af088b144d00b5e2198b2c017da153410f37334de7c08bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Cooling</topic><topic>Cooling mechanism</topic><topic>De-ionized water cooling</topic><topic>Electro-thermal-fluid model</topic><topic>Electron tubes</topic><topic>Epoxy resins</topic><topic>Flanges</topic><topic>Flow velocity</topic><topic>Flux density</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heating systems</topic><topic>Insulators</topic><topic>Liquid cooling</topic><topic>Low temperature</topic><topic>Overheating</topic><topic>Parameter scanning</topic><topic>Parameters</topic><topic>Temperature distribution</topic><topic>Thermal resistance</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Binxian</creatorcontrib><creatorcontrib>Yue, Zhanbing</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Liu, Shan</creatorcontrib><creatorcontrib>Hou, Junyi</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Zhou, Jianhui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Binxian</au><au>Yue, Zhanbing</au><au>Li, Rui</au><au>Liu, Shan</au><au>Hou, Junyi</au><au>Wang, Hang</au><au>Zhou, Jianhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Promising De-ionized Water Cooling Based ERIP Bushing-II: Cooling Mechanism and Effect of Parameters</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>38</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Overheating has become a key factor that threatens the safe operation of the epoxy resin impregnated paper (ERIP) HVDC bushing and restricts its engineering application. The de-ionized water cooling based ERIP (DIWC-ERIP) bushing utilizes diffusion and convective heat transport to achieve low temperature distribution in the DIWC-ERIP bushing. In this manuscript, the temperature, heat flux density and the heat flux distribution of the DIWC-ERIP bushing are analyzed and the cooling mechanism is discussed. The heat flux density in the current carrying conductor (CCC) is mainly in axial direction. In the ERIP it is mainly in negative radial direction in oil tank side, and in positive radial direction in flange area and air box side of the bushing. The effect of the flow rate and temperature at inlet of de-ionized water on the temperature distribution of the bushing is studied by experiments and simulations, and the simulation results are very close to the measured results. The parameters of the thermal resistance per unit length of the thermal thin layer and the radii of water tubes have little effect on the temperature distribution of the bushing. The temperature distribution of the bushing can be controlled by the temperature of water at the inlet. Due to the strong heat dissipation capacity of de-ionized water, as the flow rate is 2 L/min, the maximum temperature of the ERIP doesn't exceed 120 ℃.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2022.3218777</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7495-3512</orcidid><orcidid>https://orcid.org/0000-0003-2122-3257</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2023-06, Vol.38 (3), p.1-9
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_journals_2818364752
source IEEE Electronic Library (IEL)
subjects Aluminum
Cooling
Cooling mechanism
De-ionized water cooling
Electro-thermal-fluid model
Electron tubes
Epoxy resins
Flanges
Flow velocity
Flux density
Heat
Heat flux
Heat transfer
Heating systems
Insulators
Liquid cooling
Low temperature
Overheating
Parameter scanning
Parameters
Temperature distribution
Thermal resistance
Tubes
title A Promising De-ionized Water Cooling Based ERIP Bushing-II: Cooling Mechanism and Effect of Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Promising%20De-ionized%20Water%20Cooling%20Based%20ERIP%20Bushing-II:%20Cooling%20Mechanism%20and%20Effect%20of%20Parameters&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Lu,%20Binxian&rft.date=2023-06-01&rft.volume=38&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2022.3218777&rft_dat=%3Cproquest_RIE%3E2818364752%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818364752&rft_id=info:pmid/&rft_ieee_id=9935268&rfr_iscdi=true