A Promising De-ionized Water Cooling Based ERIP Bushing-II: Cooling Mechanism and Effect of Parameters
Overheating has become a key factor that threatens the safe operation of the epoxy resin impregnated paper (ERIP) HVDC bushing and restricts its engineering application. The de-ionized water cooling based ERIP (DIWC-ERIP) bushing utilizes diffusion and convective heat transport to achieve low temper...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 2023-06, Vol.38 (3), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on power delivery |
container_volume | 38 |
creator | Lu, Binxian Yue, Zhanbing Li, Rui Liu, Shan Hou, Junyi Wang, Hang Zhou, Jianhui |
description | Overheating has become a key factor that threatens the safe operation of the epoxy resin impregnated paper (ERIP) HVDC bushing and restricts its engineering application. The de-ionized water cooling based ERIP (DIWC-ERIP) bushing utilizes diffusion and convective heat transport to achieve low temperature distribution in the DIWC-ERIP bushing. In this manuscript, the temperature, heat flux density and the heat flux distribution of the DIWC-ERIP bushing are analyzed and the cooling mechanism is discussed. The heat flux density in the current carrying conductor (CCC) is mainly in axial direction. In the ERIP it is mainly in negative radial direction in oil tank side, and in positive radial direction in flange area and air box side of the bushing. The effect of the flow rate and temperature at inlet of de-ionized water on the temperature distribution of the bushing is studied by experiments and simulations, and the simulation results are very close to the measured results. The parameters of the thermal resistance per unit length of the thermal thin layer and the radii of water tubes have little effect on the temperature distribution of the bushing. The temperature distribution of the bushing can be controlled by the temperature of water at the inlet. Due to the strong heat dissipation capacity of de-ionized water, as the flow rate is 2 L/min, the maximum temperature of the ERIP doesn't exceed 120 ℃. |
doi_str_mv | 10.1109/TPWRD.2022.3218777 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2818364752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9935268</ieee_id><sourcerecordid>2818364752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d2c2d9bb26b3c4035af088b144d00b5e2198b2c017da153410f37334de7c08bd3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCJxDllbSe1za1_QKQioqqoR8tJbJqqiYudHuDpcWnV00qzM7OrD6F7DAOMQTwt89ViOiBAyIASzBljF6iHBWVxQoBfoh5wnsZcMHaNbrzfAEACAnrIjKLc2ab2dfsVTXVc27b-1VW0Up120cTa7WExVj5os0WWR-O9XwcpzrLn8_pdl2vV1r6JVBtsxuiyi6yJcuVUo0ORv0VXRm29vjvNPvp8mS0nb_H84zWbjOZxSUTaxRUpSSWKggwLWiZAU2XC4wVOkgqgSDXBghekBMwqhVOaYDCUUZpUmpXAi4r20eOxd-fs9177Tm7s3rXhpCQcczpMWEqCixxdpbPeO23kztWNcj8SgzzwlP885YGnPPEMoYdjqNZanwNC0JQMOf0D4y5wBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818364752</pqid></control><display><type>article</type><title>A Promising De-ionized Water Cooling Based ERIP Bushing-II: Cooling Mechanism and Effect of Parameters</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Binxian ; Yue, Zhanbing ; Li, Rui ; Liu, Shan ; Hou, Junyi ; Wang, Hang ; Zhou, Jianhui</creator><creatorcontrib>Lu, Binxian ; Yue, Zhanbing ; Li, Rui ; Liu, Shan ; Hou, Junyi ; Wang, Hang ; Zhou, Jianhui</creatorcontrib><description>Overheating has become a key factor that threatens the safe operation of the epoxy resin impregnated paper (ERIP) HVDC bushing and restricts its engineering application. The de-ionized water cooling based ERIP (DIWC-ERIP) bushing utilizes diffusion and convective heat transport to achieve low temperature distribution in the DIWC-ERIP bushing. In this manuscript, the temperature, heat flux density and the heat flux distribution of the DIWC-ERIP bushing are analyzed and the cooling mechanism is discussed. The heat flux density in the current carrying conductor (CCC) is mainly in axial direction. In the ERIP it is mainly in negative radial direction in oil tank side, and in positive radial direction in flange area and air box side of the bushing. The effect of the flow rate and temperature at inlet of de-ionized water on the temperature distribution of the bushing is studied by experiments and simulations, and the simulation results are very close to the measured results. The parameters of the thermal resistance per unit length of the thermal thin layer and the radii of water tubes have little effect on the temperature distribution of the bushing. The temperature distribution of the bushing can be controlled by the temperature of water at the inlet. Due to the strong heat dissipation capacity of de-ionized water, as the flow rate is 2 L/min, the maximum temperature of the ERIP doesn't exceed 120 ℃.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2022.3218777</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum ; Cooling ; Cooling mechanism ; De-ionized water cooling ; Electro-thermal-fluid model ; Electron tubes ; Epoxy resins ; Flanges ; Flow velocity ; Flux density ; Heat ; Heat flux ; Heat transfer ; Heating systems ; Insulators ; Liquid cooling ; Low temperature ; Overheating ; Parameter scanning ; Parameters ; Temperature distribution ; Thermal resistance ; Tubes</subject><ispartof>IEEE transactions on power delivery, 2023-06, Vol.38 (3), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d2c2d9bb26b3c4035af088b144d00b5e2198b2c017da153410f37334de7c08bd3</citedby><cites>FETCH-LOGICAL-c295t-d2c2d9bb26b3c4035af088b144d00b5e2198b2c017da153410f37334de7c08bd3</cites><orcidid>0000-0002-7495-3512 ; 0000-0003-2122-3257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9935268$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9935268$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Binxian</creatorcontrib><creatorcontrib>Yue, Zhanbing</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Liu, Shan</creatorcontrib><creatorcontrib>Hou, Junyi</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Zhou, Jianhui</creatorcontrib><title>A Promising De-ionized Water Cooling Based ERIP Bushing-II: Cooling Mechanism and Effect of Parameters</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Overheating has become a key factor that threatens the safe operation of the epoxy resin impregnated paper (ERIP) HVDC bushing and restricts its engineering application. The de-ionized water cooling based ERIP (DIWC-ERIP) bushing utilizes diffusion and convective heat transport to achieve low temperature distribution in the DIWC-ERIP bushing. In this manuscript, the temperature, heat flux density and the heat flux distribution of the DIWC-ERIP bushing are analyzed and the cooling mechanism is discussed. The heat flux density in the current carrying conductor (CCC) is mainly in axial direction. In the ERIP it is mainly in negative radial direction in oil tank side, and in positive radial direction in flange area and air box side of the bushing. The effect of the flow rate and temperature at inlet of de-ionized water on the temperature distribution of the bushing is studied by experiments and simulations, and the simulation results are very close to the measured results. The parameters of the thermal resistance per unit length of the thermal thin layer and the radii of water tubes have little effect on the temperature distribution of the bushing. The temperature distribution of the bushing can be controlled by the temperature of water at the inlet. Due to the strong heat dissipation capacity of de-ionized water, as the flow rate is 2 L/min, the maximum temperature of the ERIP doesn't exceed 120 ℃.</description><subject>Aluminum</subject><subject>Cooling</subject><subject>Cooling mechanism</subject><subject>De-ionized water cooling</subject><subject>Electro-thermal-fluid model</subject><subject>Electron tubes</subject><subject>Epoxy resins</subject><subject>Flanges</subject><subject>Flow velocity</subject><subject>Flux density</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heating systems</subject><subject>Insulators</subject><subject>Liquid cooling</subject><subject>Low temperature</subject><subject>Overheating</subject><subject>Parameter scanning</subject><subject>Parameters</subject><subject>Temperature distribution</subject><subject>Thermal resistance</subject><subject>Tubes</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnCJxDllbSe1za1_QKQioqqoR8tJbJqqiYudHuDpcWnV00qzM7OrD6F7DAOMQTwt89ViOiBAyIASzBljF6iHBWVxQoBfoh5wnsZcMHaNbrzfAEACAnrIjKLc2ab2dfsVTXVc27b-1VW0Up120cTa7WExVj5os0WWR-O9XwcpzrLn8_pdl2vV1r6JVBtsxuiyi6yJcuVUo0ORv0VXRm29vjvNPvp8mS0nb_H84zWbjOZxSUTaxRUpSSWKggwLWiZAU2XC4wVOkgqgSDXBghekBMwqhVOaYDCUUZpUmpXAi4r20eOxd-fs9177Tm7s3rXhpCQcczpMWEqCixxdpbPeO23kztWNcj8SgzzwlP885YGnPPEMoYdjqNZanwNC0JQMOf0D4y5wBQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Lu, Binxian</creator><creator>Yue, Zhanbing</creator><creator>Li, Rui</creator><creator>Liu, Shan</creator><creator>Hou, Junyi</creator><creator>Wang, Hang</creator><creator>Zhou, Jianhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7495-3512</orcidid><orcidid>https://orcid.org/0000-0003-2122-3257</orcidid></search><sort><creationdate>20230601</creationdate><title>A Promising De-ionized Water Cooling Based ERIP Bushing-II: Cooling Mechanism and Effect of Parameters</title><author>Lu, Binxian ; Yue, Zhanbing ; Li, Rui ; Liu, Shan ; Hou, Junyi ; Wang, Hang ; Zhou, Jianhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d2c2d9bb26b3c4035af088b144d00b5e2198b2c017da153410f37334de7c08bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Cooling</topic><topic>Cooling mechanism</topic><topic>De-ionized water cooling</topic><topic>Electro-thermal-fluid model</topic><topic>Electron tubes</topic><topic>Epoxy resins</topic><topic>Flanges</topic><topic>Flow velocity</topic><topic>Flux density</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heating systems</topic><topic>Insulators</topic><topic>Liquid cooling</topic><topic>Low temperature</topic><topic>Overheating</topic><topic>Parameter scanning</topic><topic>Parameters</topic><topic>Temperature distribution</topic><topic>Thermal resistance</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Binxian</creatorcontrib><creatorcontrib>Yue, Zhanbing</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Liu, Shan</creatorcontrib><creatorcontrib>Hou, Junyi</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Zhou, Jianhui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Binxian</au><au>Yue, Zhanbing</au><au>Li, Rui</au><au>Liu, Shan</au><au>Hou, Junyi</au><au>Wang, Hang</au><au>Zhou, Jianhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Promising De-ionized Water Cooling Based ERIP Bushing-II: Cooling Mechanism and Effect of Parameters</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>38</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Overheating has become a key factor that threatens the safe operation of the epoxy resin impregnated paper (ERIP) HVDC bushing and restricts its engineering application. The de-ionized water cooling based ERIP (DIWC-ERIP) bushing utilizes diffusion and convective heat transport to achieve low temperature distribution in the DIWC-ERIP bushing. In this manuscript, the temperature, heat flux density and the heat flux distribution of the DIWC-ERIP bushing are analyzed and the cooling mechanism is discussed. The heat flux density in the current carrying conductor (CCC) is mainly in axial direction. In the ERIP it is mainly in negative radial direction in oil tank side, and in positive radial direction in flange area and air box side of the bushing. The effect of the flow rate and temperature at inlet of de-ionized water on the temperature distribution of the bushing is studied by experiments and simulations, and the simulation results are very close to the measured results. The parameters of the thermal resistance per unit length of the thermal thin layer and the radii of water tubes have little effect on the temperature distribution of the bushing. The temperature distribution of the bushing can be controlled by the temperature of water at the inlet. Due to the strong heat dissipation capacity of de-ionized water, as the flow rate is 2 L/min, the maximum temperature of the ERIP doesn't exceed 120 ℃.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2022.3218777</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7495-3512</orcidid><orcidid>https://orcid.org/0000-0003-2122-3257</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8977 |
ispartof | IEEE transactions on power delivery, 2023-06, Vol.38 (3), p.1-9 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_proquest_journals_2818364752 |
source | IEEE Electronic Library (IEL) |
subjects | Aluminum Cooling Cooling mechanism De-ionized water cooling Electro-thermal-fluid model Electron tubes Epoxy resins Flanges Flow velocity Flux density Heat Heat flux Heat transfer Heating systems Insulators Liquid cooling Low temperature Overheating Parameter scanning Parameters Temperature distribution Thermal resistance Tubes |
title | A Promising De-ionized Water Cooling Based ERIP Bushing-II: Cooling Mechanism and Effect of Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Promising%20De-ionized%20Water%20Cooling%20Based%20ERIP%20Bushing-II:%20Cooling%20Mechanism%20and%20Effect%20of%20Parameters&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Lu,%20Binxian&rft.date=2023-06-01&rft.volume=38&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2022.3218777&rft_dat=%3Cproquest_RIE%3E2818364752%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818364752&rft_id=info:pmid/&rft_ieee_id=9935268&rfr_iscdi=true |