Dye-induced photoluminescence quenching of quantum dots: role of excited state lifetime and confinement of charge carriers

We investigate the role of quantum confinement and photoluminescence (PL) lifetime of photoexcited charge carriers in semiconductor core/shell quantum dots (QDs) via PL quenching due to surface modification. Surface modification is controlled by varying the number of dye molecules adsorbed onto the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-05, Vol.25 (2), p.14126-14137
Hauptverfasser: Al-Maskari, Saleem, Issac, Abey, Varanasi, Srinivasa Rao, Hildner, Richard, Sofin, R. G. Sumesh, Ibrahim, A. Ramadan, Abou-Zied, Osama K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14137
container_issue 2
container_start_page 14126
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Al-Maskari, Saleem
Issac, Abey
Varanasi, Srinivasa Rao
Hildner, Richard
Sofin, R. G. Sumesh
Ibrahim, A. Ramadan
Abou-Zied, Osama K
description We investigate the role of quantum confinement and photoluminescence (PL) lifetime of photoexcited charge carriers in semiconductor core/shell quantum dots (QDs) via PL quenching due to surface modification. Surface modification is controlled by varying the number of dye molecules adsorbed onto the QD shell surface forming QD-dye nanoassemblies. We selected CuInS 2 /ZnS (CIS) and InP/ZnS (InP) core/shell QDs exhibiting relatively weak (664 meV) and strong (1194 meV) confinement potentials for the conduction band electron. Moreover, the difference in the emission mechanism gives rise to a long and short excited state lifetime of CIS ( ca. 290 ns) and InP ( ca. 37 ns) QDs. Dye molecules of different ionic characters (rhodamine 575: zwitterionic and rhodamine 560: cationic) are used as quenchers. A detailed analysis of Stern-Volmer data shows that (i) quenching is generally more pronounced in CIS-dye assemblies as compared to InP-dye assemblies, (ii) dynamic quenching is dominating in all QD-dye assemblies with only a minor contribution from static quenching and (iii) the cationic dye shows a stronger interaction with the QD shell surface than the zwitterionic dye. Observations (i) and (ii) can be explained by the differences in the amplitude of the electronic component of the exciton wavefunction near the dye binding sites in both QDs, which results in the breaking up of the electron-hole pair and favors charge trapping. Observation (iii) can be attributed to the variations in electrostatic interactions between the negatively charged QD shell surface and the cationic and zwitterionic dyes, with the former exhibiting a stronger interaction. Moreover, the long lifetime of CIS QDs facilitates us to easily probe different time scales of the trapping processes and thus differentiate the origins of static and dynamic quenching components that appear in the Stern-Volmer analysis. Investigating the role of the photoluminescence (PL) lifetime and quantum confinement of photoexcited charge carriers in heavy metal free core-shell QDs on PL quenching due to defect sites caused by dye adsorption on the QDs' surface.
doi_str_mv 10.1039/d3cp00715d
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2817981756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811940304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-9aaffd18b119270f64277d44c66114a4c55fb5125c310766b185f59cc52969663</originalsourceid><addsrcrecordid>eNpdkUuLFDEUhYMozkM37pWAGxFqzK28Ou6ke9SBAV3oukjnMZ2hKmmTFDj-elP22AOzCDe597uHHA5Cr4BcAKHqg6VmT4gEbp-gU2CCdoqs2NPjXYoTdFbKLSEEONDn6IRKEKCoPEV_NneuC9HOxlm836WaxnkK0RXjonH419zKLsQbnHx76FjnCdtUy0ec0-iWrvttQm3Lperq8Bi8q2FyWEeLTYq-aU0u1oU0O51vHDY65-ByeYGeeT0W9_K-nqOfny9_rL9219--XK0_XXeGSlo7pbX3FlZbANVL4gXrpbSMGSEAmGaGc7_l0HNDoVkVW1hxz5UxvFdCCUHP0buD7j6n5qfUYQrN3jjq6NJchn7VlBmhhDX07SP0Ns05tt8tlFTt8EXw_YEyOZWSnR_2OUw63w1AhiWRYUPX3_8lsmnwm3vJeTs5e0T_R9CA1wcgF3OcPkRK_wLeLJAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817981756</pqid></control><display><type>article</type><title>Dye-induced photoluminescence quenching of quantum dots: role of excited state lifetime and confinement of charge carriers</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Al-Maskari, Saleem ; Issac, Abey ; Varanasi, Srinivasa Rao ; Hildner, Richard ; Sofin, R. G. Sumesh ; Ibrahim, A. Ramadan ; Abou-Zied, Osama K</creator><creatorcontrib>Al-Maskari, Saleem ; Issac, Abey ; Varanasi, Srinivasa Rao ; Hildner, Richard ; Sofin, R. G. Sumesh ; Ibrahim, A. Ramadan ; Abou-Zied, Osama K</creatorcontrib><description>We investigate the role of quantum confinement and photoluminescence (PL) lifetime of photoexcited charge carriers in semiconductor core/shell quantum dots (QDs) via PL quenching due to surface modification. Surface modification is controlled by varying the number of dye molecules adsorbed onto the QD shell surface forming QD-dye nanoassemblies. We selected CuInS 2 /ZnS (CIS) and InP/ZnS (InP) core/shell QDs exhibiting relatively weak (664 meV) and strong (1194 meV) confinement potentials for the conduction band electron. Moreover, the difference in the emission mechanism gives rise to a long and short excited state lifetime of CIS ( ca. 290 ns) and InP ( ca. 37 ns) QDs. Dye molecules of different ionic characters (rhodamine 575: zwitterionic and rhodamine 560: cationic) are used as quenchers. A detailed analysis of Stern-Volmer data shows that (i) quenching is generally more pronounced in CIS-dye assemblies as compared to InP-dye assemblies, (ii) dynamic quenching is dominating in all QD-dye assemblies with only a minor contribution from static quenching and (iii) the cationic dye shows a stronger interaction with the QD shell surface than the zwitterionic dye. Observations (i) and (ii) can be explained by the differences in the amplitude of the electronic component of the exciton wavefunction near the dye binding sites in both QDs, which results in the breaking up of the electron-hole pair and favors charge trapping. Observation (iii) can be attributed to the variations in electrostatic interactions between the negatively charged QD shell surface and the cationic and zwitterionic dyes, with the former exhibiting a stronger interaction. Moreover, the long lifetime of CIS QDs facilitates us to easily probe different time scales of the trapping processes and thus differentiate the origins of static and dynamic quenching components that appear in the Stern-Volmer analysis. Investigating the role of the photoluminescence (PL) lifetime and quantum confinement of photoexcited charge carriers in heavy metal free core-shell QDs on PL quenching due to defect sites caused by dye adsorption on the QDs' surface.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp00715d</identifier><identifier>PMID: 37161937</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Assemblies ; Binding sites ; Cationic dyes ; Conduction bands ; Current carriers ; Electronic components ; Excitation ; Excitons ; Indium phosphides ; Photoluminescence ; Quantum confinement ; Quantum dots ; Quenching ; Rhodamine ; Trapping ; Wave functions ; Zinc sulfide ; Zwitterions</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-05, Vol.25 (2), p.14126-14137</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-9aaffd18b119270f64277d44c66114a4c55fb5125c310766b185f59cc52969663</citedby><cites>FETCH-LOGICAL-c373t-9aaffd18b119270f64277d44c66114a4c55fb5125c310766b185f59cc52969663</cites><orcidid>0000-0003-0497-8412 ; 0000-0002-7282-3730 ; 0000-0003-1408-2599 ; 0000-0002-0145-8940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37161937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Maskari, Saleem</creatorcontrib><creatorcontrib>Issac, Abey</creatorcontrib><creatorcontrib>Varanasi, Srinivasa Rao</creatorcontrib><creatorcontrib>Hildner, Richard</creatorcontrib><creatorcontrib>Sofin, R. G. Sumesh</creatorcontrib><creatorcontrib>Ibrahim, A. Ramadan</creatorcontrib><creatorcontrib>Abou-Zied, Osama K</creatorcontrib><title>Dye-induced photoluminescence quenching of quantum dots: role of excited state lifetime and confinement of charge carriers</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We investigate the role of quantum confinement and photoluminescence (PL) lifetime of photoexcited charge carriers in semiconductor core/shell quantum dots (QDs) via PL quenching due to surface modification. Surface modification is controlled by varying the number of dye molecules adsorbed onto the QD shell surface forming QD-dye nanoassemblies. We selected CuInS 2 /ZnS (CIS) and InP/ZnS (InP) core/shell QDs exhibiting relatively weak (664 meV) and strong (1194 meV) confinement potentials for the conduction band electron. Moreover, the difference in the emission mechanism gives rise to a long and short excited state lifetime of CIS ( ca. 290 ns) and InP ( ca. 37 ns) QDs. Dye molecules of different ionic characters (rhodamine 575: zwitterionic and rhodamine 560: cationic) are used as quenchers. A detailed analysis of Stern-Volmer data shows that (i) quenching is generally more pronounced in CIS-dye assemblies as compared to InP-dye assemblies, (ii) dynamic quenching is dominating in all QD-dye assemblies with only a minor contribution from static quenching and (iii) the cationic dye shows a stronger interaction with the QD shell surface than the zwitterionic dye. Observations (i) and (ii) can be explained by the differences in the amplitude of the electronic component of the exciton wavefunction near the dye binding sites in both QDs, which results in the breaking up of the electron-hole pair and favors charge trapping. Observation (iii) can be attributed to the variations in electrostatic interactions between the negatively charged QD shell surface and the cationic and zwitterionic dyes, with the former exhibiting a stronger interaction. Moreover, the long lifetime of CIS QDs facilitates us to easily probe different time scales of the trapping processes and thus differentiate the origins of static and dynamic quenching components that appear in the Stern-Volmer analysis. Investigating the role of the photoluminescence (PL) lifetime and quantum confinement of photoexcited charge carriers in heavy metal free core-shell QDs on PL quenching due to defect sites caused by dye adsorption on the QDs' surface.</description><subject>Assemblies</subject><subject>Binding sites</subject><subject>Cationic dyes</subject><subject>Conduction bands</subject><subject>Current carriers</subject><subject>Electronic components</subject><subject>Excitation</subject><subject>Excitons</subject><subject>Indium phosphides</subject><subject>Photoluminescence</subject><subject>Quantum confinement</subject><subject>Quantum dots</subject><subject>Quenching</subject><subject>Rhodamine</subject><subject>Trapping</subject><subject>Wave functions</subject><subject>Zinc sulfide</subject><subject>Zwitterions</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUuLFDEUhYMozkM37pWAGxFqzK28Ou6ke9SBAV3oukjnMZ2hKmmTFDj-elP22AOzCDe597uHHA5Cr4BcAKHqg6VmT4gEbp-gU2CCdoqs2NPjXYoTdFbKLSEEONDn6IRKEKCoPEV_NneuC9HOxlm836WaxnkK0RXjonH419zKLsQbnHx76FjnCdtUy0ec0-iWrvttQm3Lperq8Bi8q2FyWEeLTYq-aU0u1oU0O51vHDY65-ByeYGeeT0W9_K-nqOfny9_rL9219--XK0_XXeGSlo7pbX3FlZbANVL4gXrpbSMGSEAmGaGc7_l0HNDoVkVW1hxz5UxvFdCCUHP0buD7j6n5qfUYQrN3jjq6NJchn7VlBmhhDX07SP0Ns05tt8tlFTt8EXw_YEyOZWSnR_2OUw63w1AhiWRYUPX3_8lsmnwm3vJeTs5e0T_R9CA1wcgF3OcPkRK_wLeLJAk</recordid><startdate>20230524</startdate><enddate>20230524</enddate><creator>Al-Maskari, Saleem</creator><creator>Issac, Abey</creator><creator>Varanasi, Srinivasa Rao</creator><creator>Hildner, Richard</creator><creator>Sofin, R. G. Sumesh</creator><creator>Ibrahim, A. Ramadan</creator><creator>Abou-Zied, Osama K</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0497-8412</orcidid><orcidid>https://orcid.org/0000-0002-7282-3730</orcidid><orcidid>https://orcid.org/0000-0003-1408-2599</orcidid><orcidid>https://orcid.org/0000-0002-0145-8940</orcidid></search><sort><creationdate>20230524</creationdate><title>Dye-induced photoluminescence quenching of quantum dots: role of excited state lifetime and confinement of charge carriers</title><author>Al-Maskari, Saleem ; Issac, Abey ; Varanasi, Srinivasa Rao ; Hildner, Richard ; Sofin, R. G. Sumesh ; Ibrahim, A. Ramadan ; Abou-Zied, Osama K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-9aaffd18b119270f64277d44c66114a4c55fb5125c310766b185f59cc52969663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Assemblies</topic><topic>Binding sites</topic><topic>Cationic dyes</topic><topic>Conduction bands</topic><topic>Current carriers</topic><topic>Electronic components</topic><topic>Excitation</topic><topic>Excitons</topic><topic>Indium phosphides</topic><topic>Photoluminescence</topic><topic>Quantum confinement</topic><topic>Quantum dots</topic><topic>Quenching</topic><topic>Rhodamine</topic><topic>Trapping</topic><topic>Wave functions</topic><topic>Zinc sulfide</topic><topic>Zwitterions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Maskari, Saleem</creatorcontrib><creatorcontrib>Issac, Abey</creatorcontrib><creatorcontrib>Varanasi, Srinivasa Rao</creatorcontrib><creatorcontrib>Hildner, Richard</creatorcontrib><creatorcontrib>Sofin, R. G. Sumesh</creatorcontrib><creatorcontrib>Ibrahim, A. Ramadan</creatorcontrib><creatorcontrib>Abou-Zied, Osama K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Maskari, Saleem</au><au>Issac, Abey</au><au>Varanasi, Srinivasa Rao</au><au>Hildner, Richard</au><au>Sofin, R. G. Sumesh</au><au>Ibrahim, A. Ramadan</au><au>Abou-Zied, Osama K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dye-induced photoluminescence quenching of quantum dots: role of excited state lifetime and confinement of charge carriers</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-05-24</date><risdate>2023</risdate><volume>25</volume><issue>2</issue><spage>14126</spage><epage>14137</epage><pages>14126-14137</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We investigate the role of quantum confinement and photoluminescence (PL) lifetime of photoexcited charge carriers in semiconductor core/shell quantum dots (QDs) via PL quenching due to surface modification. Surface modification is controlled by varying the number of dye molecules adsorbed onto the QD shell surface forming QD-dye nanoassemblies. We selected CuInS 2 /ZnS (CIS) and InP/ZnS (InP) core/shell QDs exhibiting relatively weak (664 meV) and strong (1194 meV) confinement potentials for the conduction band electron. Moreover, the difference in the emission mechanism gives rise to a long and short excited state lifetime of CIS ( ca. 290 ns) and InP ( ca. 37 ns) QDs. Dye molecules of different ionic characters (rhodamine 575: zwitterionic and rhodamine 560: cationic) are used as quenchers. A detailed analysis of Stern-Volmer data shows that (i) quenching is generally more pronounced in CIS-dye assemblies as compared to InP-dye assemblies, (ii) dynamic quenching is dominating in all QD-dye assemblies with only a minor contribution from static quenching and (iii) the cationic dye shows a stronger interaction with the QD shell surface than the zwitterionic dye. Observations (i) and (ii) can be explained by the differences in the amplitude of the electronic component of the exciton wavefunction near the dye binding sites in both QDs, which results in the breaking up of the electron-hole pair and favors charge trapping. Observation (iii) can be attributed to the variations in electrostatic interactions between the negatively charged QD shell surface and the cationic and zwitterionic dyes, with the former exhibiting a stronger interaction. Moreover, the long lifetime of CIS QDs facilitates us to easily probe different time scales of the trapping processes and thus differentiate the origins of static and dynamic quenching components that appear in the Stern-Volmer analysis. Investigating the role of the photoluminescence (PL) lifetime and quantum confinement of photoexcited charge carriers in heavy metal free core-shell QDs on PL quenching due to defect sites caused by dye adsorption on the QDs' surface.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37161937</pmid><doi>10.1039/d3cp00715d</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0497-8412</orcidid><orcidid>https://orcid.org/0000-0002-7282-3730</orcidid><orcidid>https://orcid.org/0000-0003-1408-2599</orcidid><orcidid>https://orcid.org/0000-0002-0145-8940</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-05, Vol.25 (2), p.14126-14137
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_journals_2817981756
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Assemblies
Binding sites
Cationic dyes
Conduction bands
Current carriers
Electronic components
Excitation
Excitons
Indium phosphides
Photoluminescence
Quantum confinement
Quantum dots
Quenching
Rhodamine
Trapping
Wave functions
Zinc sulfide
Zwitterions
title Dye-induced photoluminescence quenching of quantum dots: role of excited state lifetime and confinement of charge carriers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dye-induced%20photoluminescence%20quenching%20of%20quantum%20dots:%20role%20of%20excited%20state%20lifetime%20and%20confinement%20of%20charge%20carriers&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Al-Maskari,%20Saleem&rft.date=2023-05-24&rft.volume=25&rft.issue=2&rft.spage=14126&rft.epage=14137&rft.pages=14126-14137&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp00715d&rft_dat=%3Cproquest_pubme%3E2811940304%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817981756&rft_id=info:pmid/37161937&rfr_iscdi=true