Silicon/nickel oxide core/shell nanospheres as a hole transport layer for high efficiency and light-stable perovskite solar cells
Metal halide perovskite solar cells (PSCs) possess huge potential due to their high power conversion efficiency. However, instability is still a key factor limiting their applications. Therefore, we have found a feasible strategy to improve the light stability of PSCs. Specifically, a core-shell mat...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-05, Vol.25 (2), p.1456-1463 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1463 |
---|---|
container_issue | 2 |
container_start_page | 1456 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Zhai, Jifeng Yin, Xin Xiong, Jie Du, Pingfan Chen, Wei-Hsiang Song, Lixin |
description | Metal halide perovskite solar cells (PSCs) possess huge potential due to their high power conversion efficiency. However, instability is still a key factor limiting their applications. Therefore, we have found a feasible strategy to improve the light stability of PSCs. Specifically, a core-shell material with a silicon nanosphere core and a nickel oxide nanosheet shell serves as the hole transport layer in our PSCs. Due to the selective absorption of ultraviolet light by the silicon nanoparticles, the ultraviolet light content of the natural light that reaches the perovskite layer is reduced. Compared with a control device (without Si), the PSCs with the silicon/nickel oxide hole transport layer possessed a higher current density of 22.09 mA cm
−2
and a higher power conversion efficiency of 18.54%, with both values increased by 2.7% and 6.1%, respectively. More importantly, the PSCs based on a silicon/nickel oxide hole transport layer maintains 85% of its initial power conversion efficiency value after 700 hours of natural light exposure. These results indicate that the silicon/nickel oxide hole transport layer is an important functional component of the PSCs, which improves the photovoltaic performance and reduces ultraviolet light-induced photodegradation, thereby improving the device stability.
A core-shell structure material of silicon/nickel oxide nanosheets provides huge potential for high efficiency and long-term stability of metal halide perovskite solar cells. |
doi_str_mv | 10.1039/d3cp00678f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2817980229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817980229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-ff57718cd49ffb210c302cbee8831765535ab459f9bb14fd6231a16eb84421533</originalsourceid><addsrcrecordid>eNpd0UFrHCEUB3ApDU2y7aX3FKGXUpiujqOjx7Bt0kCghbbnwXGeGRNXpzobusd887jddAsBQdGf7z34I_SWkk-UMLUcmJkIEa20L9AJbQSrFJHNy8O5FcfoNOdbQgjllL1Cx6ylggrenqCHH847E8MyOHMHHsc_bgBsYoJlHsF7HHSIeRohQca6LDxGD3hOOuQpphl7vYWEbUx4dDcjBmudcRDMFuswYF_u5irPui-fJkjxPt-5GXCOXidsSoP8Gh1Z7TO8edoX6NfFl5-rr9X1t8ur1fl1ZWol5spa3rZUmqFR1vY1JYaR2vQAUjLaCs4Z133DlVV9Txs7iJpRTQX0smlqyhlboA_7ulOKvzeQ527t8m4CHSBucldLShWTXDWFvn9Gb-MmhTLdTrVKkrpWRX3cK5NizglsNyW31mnbUdLtguk-s9X3v8FcFPzuqeSmX8NwoP-SKOBsD1I2h9f_ybJH_veTfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817980229</pqid></control><display><type>article</type><title>Silicon/nickel oxide core/shell nanospheres as a hole transport layer for high efficiency and light-stable perovskite solar cells</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Zhai, Jifeng ; Yin, Xin ; Xiong, Jie ; Du, Pingfan ; Chen, Wei-Hsiang ; Song, Lixin</creator><creatorcontrib>Zhai, Jifeng ; Yin, Xin ; Xiong, Jie ; Du, Pingfan ; Chen, Wei-Hsiang ; Song, Lixin</creatorcontrib><description>Metal halide perovskite solar cells (PSCs) possess huge potential due to their high power conversion efficiency. However, instability is still a key factor limiting their applications. Therefore, we have found a feasible strategy to improve the light stability of PSCs. Specifically, a core-shell material with a silicon nanosphere core and a nickel oxide nanosheet shell serves as the hole transport layer in our PSCs. Due to the selective absorption of ultraviolet light by the silicon nanoparticles, the ultraviolet light content of the natural light that reaches the perovskite layer is reduced. Compared with a control device (without Si), the PSCs with the silicon/nickel oxide hole transport layer possessed a higher current density of 22.09 mA cm
−2
and a higher power conversion efficiency of 18.54%, with both values increased by 2.7% and 6.1%, respectively. More importantly, the PSCs based on a silicon/nickel oxide hole transport layer maintains 85% of its initial power conversion efficiency value after 700 hours of natural light exposure. These results indicate that the silicon/nickel oxide hole transport layer is an important functional component of the PSCs, which improves the photovoltaic performance and reduces ultraviolet light-induced photodegradation, thereby improving the device stability.
A core-shell structure material of silicon/nickel oxide nanosheets provides huge potential for high efficiency and long-term stability of metal halide perovskite solar cells.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp00678f</identifier><identifier>PMID: 37161657</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Control equipment ; Efficiency ; Energy conversion efficiency ; Light ; Metal halides ; Nanoparticles ; Nanospheres ; Natural lighting ; Nickel oxides ; Perovskites ; Photodegradation ; Photovoltaic cells ; Silicon ; Solar cells ; Ultraviolet radiation</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-05, Vol.25 (2), p.1456-1463</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-ff57718cd49ffb210c302cbee8831765535ab459f9bb14fd6231a16eb84421533</cites><orcidid>0000-0001-7941-2574 ; 0000-0003-2704-0435 ; 0000-0002-8018-7981 ; 0000-0002-3056-7169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37161657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Jifeng</creatorcontrib><creatorcontrib>Yin, Xin</creatorcontrib><creatorcontrib>Xiong, Jie</creatorcontrib><creatorcontrib>Du, Pingfan</creatorcontrib><creatorcontrib>Chen, Wei-Hsiang</creatorcontrib><creatorcontrib>Song, Lixin</creatorcontrib><title>Silicon/nickel oxide core/shell nanospheres as a hole transport layer for high efficiency and light-stable perovskite solar cells</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Metal halide perovskite solar cells (PSCs) possess huge potential due to their high power conversion efficiency. However, instability is still a key factor limiting their applications. Therefore, we have found a feasible strategy to improve the light stability of PSCs. Specifically, a core-shell material with a silicon nanosphere core and a nickel oxide nanosheet shell serves as the hole transport layer in our PSCs. Due to the selective absorption of ultraviolet light by the silicon nanoparticles, the ultraviolet light content of the natural light that reaches the perovskite layer is reduced. Compared with a control device (without Si), the PSCs with the silicon/nickel oxide hole transport layer possessed a higher current density of 22.09 mA cm
−2
and a higher power conversion efficiency of 18.54%, with both values increased by 2.7% and 6.1%, respectively. More importantly, the PSCs based on a silicon/nickel oxide hole transport layer maintains 85% of its initial power conversion efficiency value after 700 hours of natural light exposure. These results indicate that the silicon/nickel oxide hole transport layer is an important functional component of the PSCs, which improves the photovoltaic performance and reduces ultraviolet light-induced photodegradation, thereby improving the device stability.
A core-shell structure material of silicon/nickel oxide nanosheets provides huge potential for high efficiency and long-term stability of metal halide perovskite solar cells.</description><subject>Control equipment</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Light</subject><subject>Metal halides</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Natural lighting</subject><subject>Nickel oxides</subject><subject>Perovskites</subject><subject>Photodegradation</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Ultraviolet radiation</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0UFrHCEUB3ApDU2y7aX3FKGXUpiujqOjx7Bt0kCghbbnwXGeGRNXpzobusd887jddAsBQdGf7z34I_SWkk-UMLUcmJkIEa20L9AJbQSrFJHNy8O5FcfoNOdbQgjllL1Cx6ylggrenqCHH847E8MyOHMHHsc_bgBsYoJlHsF7HHSIeRohQca6LDxGD3hOOuQpphl7vYWEbUx4dDcjBmudcRDMFuswYF_u5irPui-fJkjxPt-5GXCOXidsSoP8Gh1Z7TO8edoX6NfFl5-rr9X1t8ur1fl1ZWol5spa3rZUmqFR1vY1JYaR2vQAUjLaCs4Z133DlVV9Txs7iJpRTQX0smlqyhlboA_7ulOKvzeQ527t8m4CHSBucldLShWTXDWFvn9Gb-MmhTLdTrVKkrpWRX3cK5NizglsNyW31mnbUdLtguk-s9X3v8FcFPzuqeSmX8NwoP-SKOBsD1I2h9f_ybJH_veTfw</recordid><startdate>20230524</startdate><enddate>20230524</enddate><creator>Zhai, Jifeng</creator><creator>Yin, Xin</creator><creator>Xiong, Jie</creator><creator>Du, Pingfan</creator><creator>Chen, Wei-Hsiang</creator><creator>Song, Lixin</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7941-2574</orcidid><orcidid>https://orcid.org/0000-0003-2704-0435</orcidid><orcidid>https://orcid.org/0000-0002-8018-7981</orcidid><orcidid>https://orcid.org/0000-0002-3056-7169</orcidid></search><sort><creationdate>20230524</creationdate><title>Silicon/nickel oxide core/shell nanospheres as a hole transport layer for high efficiency and light-stable perovskite solar cells</title><author>Zhai, Jifeng ; Yin, Xin ; Xiong, Jie ; Du, Pingfan ; Chen, Wei-Hsiang ; Song, Lixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-ff57718cd49ffb210c302cbee8831765535ab459f9bb14fd6231a16eb84421533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Control equipment</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Light</topic><topic>Metal halides</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Natural lighting</topic><topic>Nickel oxides</topic><topic>Perovskites</topic><topic>Photodegradation</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Jifeng</creatorcontrib><creatorcontrib>Yin, Xin</creatorcontrib><creatorcontrib>Xiong, Jie</creatorcontrib><creatorcontrib>Du, Pingfan</creatorcontrib><creatorcontrib>Chen, Wei-Hsiang</creatorcontrib><creatorcontrib>Song, Lixin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Jifeng</au><au>Yin, Xin</au><au>Xiong, Jie</au><au>Du, Pingfan</au><au>Chen, Wei-Hsiang</au><au>Song, Lixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon/nickel oxide core/shell nanospheres as a hole transport layer for high efficiency and light-stable perovskite solar cells</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-05-24</date><risdate>2023</risdate><volume>25</volume><issue>2</issue><spage>1456</spage><epage>1463</epage><pages>1456-1463</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Metal halide perovskite solar cells (PSCs) possess huge potential due to their high power conversion efficiency. However, instability is still a key factor limiting their applications. Therefore, we have found a feasible strategy to improve the light stability of PSCs. Specifically, a core-shell material with a silicon nanosphere core and a nickel oxide nanosheet shell serves as the hole transport layer in our PSCs. Due to the selective absorption of ultraviolet light by the silicon nanoparticles, the ultraviolet light content of the natural light that reaches the perovskite layer is reduced. Compared with a control device (without Si), the PSCs with the silicon/nickel oxide hole transport layer possessed a higher current density of 22.09 mA cm
−2
and a higher power conversion efficiency of 18.54%, with both values increased by 2.7% and 6.1%, respectively. More importantly, the PSCs based on a silicon/nickel oxide hole transport layer maintains 85% of its initial power conversion efficiency value after 700 hours of natural light exposure. These results indicate that the silicon/nickel oxide hole transport layer is an important functional component of the PSCs, which improves the photovoltaic performance and reduces ultraviolet light-induced photodegradation, thereby improving the device stability.
A core-shell structure material of silicon/nickel oxide nanosheets provides huge potential for high efficiency and long-term stability of metal halide perovskite solar cells.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37161657</pmid><doi>10.1039/d3cp00678f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7941-2574</orcidid><orcidid>https://orcid.org/0000-0003-2704-0435</orcidid><orcidid>https://orcid.org/0000-0002-8018-7981</orcidid><orcidid>https://orcid.org/0000-0002-3056-7169</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-05, Vol.25 (2), p.1456-1463 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_journals_2817980229 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Control equipment Efficiency Energy conversion efficiency Light Metal halides Nanoparticles Nanospheres Natural lighting Nickel oxides Perovskites Photodegradation Photovoltaic cells Silicon Solar cells Ultraviolet radiation |
title | Silicon/nickel oxide core/shell nanospheres as a hole transport layer for high efficiency and light-stable perovskite solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon/nickel%20oxide%20core/shell%20nanospheres%20as%20a%20hole%20transport%20layer%20for%20high%20efficiency%20and%20light-stable%20perovskite%20solar%20cells&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Zhai,%20Jifeng&rft.date=2023-05-24&rft.volume=25&rft.issue=2&rft.spage=1456&rft.epage=1463&rft.pages=1456-1463&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp00678f&rft_dat=%3Cproquest_pubme%3E2817980229%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817980229&rft_id=info:pmid/37161657&rfr_iscdi=true |