Micromechanical modeling and experimental analysis of yarn separation type sewing damage on continuous filament fabrics

Fabrics with weaves of low interlacing density and smooth yarns such as continuous cuprammonium filaments are often susceptible to sewing damage of cracks perpendicular to the sewing line, seriously influencing the aesthetics of the finished garment. To understand how the important factors such as y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Textile Research Journal 2023-06, Vol.93 (11-12), p.2908-2917
Hauptverfasser: Cui, Lina, Weng, Chengwu, Liu, Gui, Huang, Canyi, Liu, Fanxizi, Zhang, Yinjia, Qiu, Yiping, Zhang, Chuyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2917
container_issue 11-12
container_start_page 2908
container_title Textile Research Journal
container_volume 93
creator Cui, Lina
Weng, Chengwu
Liu, Gui
Huang, Canyi
Liu, Fanxizi
Zhang, Yinjia
Qiu, Yiping
Zhang, Chuyang
description Fabrics with weaves of low interlacing density and smooth yarns such as continuous cuprammonium filaments are often susceptible to sewing damage of cracks perpendicular to the sewing line, seriously influencing the aesthetics of the finished garment. To understand how the important factors such as yarn modulus, yarn bending stiffness, sewing needle radius, yarn-on yarn-friction, fabric counts and fabric weaves act on the crack length of such a fabric, a micromechanical model is proposed, and the experimental results are compared with the theoretical prediction. Single yarn pull-out tests and single yarn axial compression tests are performed to estimate yarn-on-yarn friction and yarn bending stiffness, respectively. The model indicates that the sewing crack length is positively proportional to the yarn tensile modulus, yarn bending stiffness and the needle radius and is negatively proportional to the fabric count and the inter-yarn friction. The model predicted crack lengths are within the range of the experimental results in warp direction while the predicted value is substantially larger than the observed crack lengths in weft direction due to the high compressibility of the weft yarn, which decreased yarn tension, bending stiffness and increased yarn cover power. For a given fabric, increasing yarn-on-yarn friction and raising yarn compressibility is an effective way to control the crack lengths.
doi_str_mv 10.1177/00405175221144239
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817967874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_00405175221144239</sage_id><sourcerecordid>2817967874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-96fc45b4826ec68ddedbc44506385fc2ff38636d0a201b10cb99ec5808208e53</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoWEcfwF3AdcckTZN0KYN_MOJm9iVNkzFDm9SkZezbmzKCC3F1ufee78A5ANxitMaY83uEKCoxLwnBmFJSVGcgw5yynHMqzkG2_PNFcAmuYjwghITgIgPHN6uC77X6kM4q2cHet7qzbg-la6H-GnSwvXZj-kgnuznaCL2BswwORj3IIEfrHRznQaf9uICt7OVew3RV3o3WTX6K0NhOLj7QyCZYFa_BhZFd1Dc_cwV2T4-7zUu-fX9-3Txsc0UYHfOKGUXLhgrCtGKibXXbKEpLxApRGkWMKQQrWIskQbjBSDVVpVUpkCBI6LJYgbuT7RD856TjWB_8FFKQWBOBecW44DSp8EmVqogxaFMPKbUMc41RvdRb_6k3MesTE1PYX9f_gW_qq3xJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817967874</pqid></control><display><type>article</type><title>Micromechanical modeling and experimental analysis of yarn separation type sewing damage on continuous filament fabrics</title><source>SAGE Complete A-Z List</source><creator>Cui, Lina ; Weng, Chengwu ; Liu, Gui ; Huang, Canyi ; Liu, Fanxizi ; Zhang, Yinjia ; Qiu, Yiping ; Zhang, Chuyang</creator><creatorcontrib>Cui, Lina ; Weng, Chengwu ; Liu, Gui ; Huang, Canyi ; Liu, Fanxizi ; Zhang, Yinjia ; Qiu, Yiping ; Zhang, Chuyang</creatorcontrib><description>Fabrics with weaves of low interlacing density and smooth yarns such as continuous cuprammonium filaments are often susceptible to sewing damage of cracks perpendicular to the sewing line, seriously influencing the aesthetics of the finished garment. To understand how the important factors such as yarn modulus, yarn bending stiffness, sewing needle radius, yarn-on yarn-friction, fabric counts and fabric weaves act on the crack length of such a fabric, a micromechanical model is proposed, and the experimental results are compared with the theoretical prediction. Single yarn pull-out tests and single yarn axial compression tests are performed to estimate yarn-on-yarn friction and yarn bending stiffness, respectively. The model indicates that the sewing crack length is positively proportional to the yarn tensile modulus, yarn bending stiffness and the needle radius and is negatively proportional to the fabric count and the inter-yarn friction. The model predicted crack lengths are within the range of the experimental results in warp direction while the predicted value is substantially larger than the observed crack lengths in weft direction due to the high compressibility of the weft yarn, which decreased yarn tension, bending stiffness and increased yarn cover power. For a given fabric, increasing yarn-on-yarn friction and raising yarn compressibility is an effective way to control the crack lengths.</description><identifier>ISSN: 0040-5175</identifier><identifier>EISSN: 1746-7748</identifier><identifier>DOI: 10.1177/00405175221144239</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Axial compression ; Compressibility ; Compression ; Compression tests ; Damage ; Fabrics ; Filaments ; Friction ; Modulus of elasticity ; Needles ; Pull out tests ; Sewing ; Stiffness ; Warp ; Weft ; Yarns</subject><ispartof>Textile Research Journal, 2023-06, Vol.93 (11-12), p.2908-2917</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-96fc45b4826ec68ddedbc44506385fc2ff38636d0a201b10cb99ec5808208e53</cites><orcidid>0000-0003-0060-9847 ; 0000-0001-5116-9955 ; 0000-0003-4987-3585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/00405175221144239$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/00405175221144239$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>313,314,776,780,788,21798,27899,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Cui, Lina</creatorcontrib><creatorcontrib>Weng, Chengwu</creatorcontrib><creatorcontrib>Liu, Gui</creatorcontrib><creatorcontrib>Huang, Canyi</creatorcontrib><creatorcontrib>Liu, Fanxizi</creatorcontrib><creatorcontrib>Zhang, Yinjia</creatorcontrib><creatorcontrib>Qiu, Yiping</creatorcontrib><creatorcontrib>Zhang, Chuyang</creatorcontrib><title>Micromechanical modeling and experimental analysis of yarn separation type sewing damage on continuous filament fabrics</title><title>Textile Research Journal</title><description>Fabrics with weaves of low interlacing density and smooth yarns such as continuous cuprammonium filaments are often susceptible to sewing damage of cracks perpendicular to the sewing line, seriously influencing the aesthetics of the finished garment. To understand how the important factors such as yarn modulus, yarn bending stiffness, sewing needle radius, yarn-on yarn-friction, fabric counts and fabric weaves act on the crack length of such a fabric, a micromechanical model is proposed, and the experimental results are compared with the theoretical prediction. Single yarn pull-out tests and single yarn axial compression tests are performed to estimate yarn-on-yarn friction and yarn bending stiffness, respectively. The model indicates that the sewing crack length is positively proportional to the yarn tensile modulus, yarn bending stiffness and the needle radius and is negatively proportional to the fabric count and the inter-yarn friction. The model predicted crack lengths are within the range of the experimental results in warp direction while the predicted value is substantially larger than the observed crack lengths in weft direction due to the high compressibility of the weft yarn, which decreased yarn tension, bending stiffness and increased yarn cover power. For a given fabric, increasing yarn-on-yarn friction and raising yarn compressibility is an effective way to control the crack lengths.</description><subject>Axial compression</subject><subject>Compressibility</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Damage</subject><subject>Fabrics</subject><subject>Filaments</subject><subject>Friction</subject><subject>Modulus of elasticity</subject><subject>Needles</subject><subject>Pull out tests</subject><subject>Sewing</subject><subject>Stiffness</subject><subject>Warp</subject><subject>Weft</subject><subject>Yarns</subject><issn>0040-5175</issn><issn>1746-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoWEcfwF3AdcckTZN0KYN_MOJm9iVNkzFDm9SkZezbmzKCC3F1ufee78A5ANxitMaY83uEKCoxLwnBmFJSVGcgw5yynHMqzkG2_PNFcAmuYjwghITgIgPHN6uC77X6kM4q2cHet7qzbg-la6H-GnSwvXZj-kgnuznaCL2BswwORj3IIEfrHRznQaf9uICt7OVew3RV3o3WTX6K0NhOLj7QyCZYFa_BhZFd1Dc_cwV2T4-7zUu-fX9-3Txsc0UYHfOKGUXLhgrCtGKibXXbKEpLxApRGkWMKQQrWIskQbjBSDVVpVUpkCBI6LJYgbuT7RD856TjWB_8FFKQWBOBecW44DSp8EmVqogxaFMPKbUMc41RvdRb_6k3MesTE1PYX9f_gW_qq3xJ</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Cui, Lina</creator><creator>Weng, Chengwu</creator><creator>Liu, Gui</creator><creator>Huang, Canyi</creator><creator>Liu, Fanxizi</creator><creator>Zhang, Yinjia</creator><creator>Qiu, Yiping</creator><creator>Zhang, Chuyang</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0060-9847</orcidid><orcidid>https://orcid.org/0000-0001-5116-9955</orcidid><orcidid>https://orcid.org/0000-0003-4987-3585</orcidid></search><sort><creationdate>202306</creationdate><title>Micromechanical modeling and experimental analysis of yarn separation type sewing damage on continuous filament fabrics</title><author>Cui, Lina ; Weng, Chengwu ; Liu, Gui ; Huang, Canyi ; Liu, Fanxizi ; Zhang, Yinjia ; Qiu, Yiping ; Zhang, Chuyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-96fc45b4826ec68ddedbc44506385fc2ff38636d0a201b10cb99ec5808208e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Axial compression</topic><topic>Compressibility</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Damage</topic><topic>Fabrics</topic><topic>Filaments</topic><topic>Friction</topic><topic>Modulus of elasticity</topic><topic>Needles</topic><topic>Pull out tests</topic><topic>Sewing</topic><topic>Stiffness</topic><topic>Warp</topic><topic>Weft</topic><topic>Yarns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Lina</creatorcontrib><creatorcontrib>Weng, Chengwu</creatorcontrib><creatorcontrib>Liu, Gui</creatorcontrib><creatorcontrib>Huang, Canyi</creatorcontrib><creatorcontrib>Liu, Fanxizi</creatorcontrib><creatorcontrib>Zhang, Yinjia</creatorcontrib><creatorcontrib>Qiu, Yiping</creatorcontrib><creatorcontrib>Zhang, Chuyang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Textile Research Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Lina</au><au>Weng, Chengwu</au><au>Liu, Gui</au><au>Huang, Canyi</au><au>Liu, Fanxizi</au><au>Zhang, Yinjia</au><au>Qiu, Yiping</au><au>Zhang, Chuyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical modeling and experimental analysis of yarn separation type sewing damage on continuous filament fabrics</atitle><jtitle>Textile Research Journal</jtitle><date>2023-06</date><risdate>2023</risdate><volume>93</volume><issue>11-12</issue><spage>2908</spage><epage>2917</epage><pages>2908-2917</pages><issn>0040-5175</issn><eissn>1746-7748</eissn><abstract>Fabrics with weaves of low interlacing density and smooth yarns such as continuous cuprammonium filaments are often susceptible to sewing damage of cracks perpendicular to the sewing line, seriously influencing the aesthetics of the finished garment. To understand how the important factors such as yarn modulus, yarn bending stiffness, sewing needle radius, yarn-on yarn-friction, fabric counts and fabric weaves act on the crack length of such a fabric, a micromechanical model is proposed, and the experimental results are compared with the theoretical prediction. Single yarn pull-out tests and single yarn axial compression tests are performed to estimate yarn-on-yarn friction and yarn bending stiffness, respectively. The model indicates that the sewing crack length is positively proportional to the yarn tensile modulus, yarn bending stiffness and the needle radius and is negatively proportional to the fabric count and the inter-yarn friction. The model predicted crack lengths are within the range of the experimental results in warp direction while the predicted value is substantially larger than the observed crack lengths in weft direction due to the high compressibility of the weft yarn, which decreased yarn tension, bending stiffness and increased yarn cover power. For a given fabric, increasing yarn-on-yarn friction and raising yarn compressibility is an effective way to control the crack lengths.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/00405175221144239</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0060-9847</orcidid><orcidid>https://orcid.org/0000-0001-5116-9955</orcidid><orcidid>https://orcid.org/0000-0003-4987-3585</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5175
ispartof Textile Research Journal, 2023-06, Vol.93 (11-12), p.2908-2917
issn 0040-5175
1746-7748
language eng
recordid cdi_proquest_journals_2817967874
source SAGE Complete A-Z List
subjects Axial compression
Compressibility
Compression
Compression tests
Damage
Fabrics
Filaments
Friction
Modulus of elasticity
Needles
Pull out tests
Sewing
Stiffness
Warp
Weft
Yarns
title Micromechanical modeling and experimental analysis of yarn separation type sewing damage on continuous filament fabrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20modeling%20and%20experimental%20analysis%20of%20yarn%20separation%20type%20sewing%20damage%20on%20continuous%20filament%20fabrics&rft.jtitle=Textile%20Research%20Journal&rft.au=Cui,%20Lina&rft.date=2023-06&rft.volume=93&rft.issue=11-12&rft.spage=2908&rft.epage=2917&rft.pages=2908-2917&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177/00405175221144239&rft_dat=%3Cproquest_cross%3E2817967874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817967874&rft_id=info:pmid/&rft_sage_id=10.1177_00405175221144239&rfr_iscdi=true