Micromechanical modeling and experimental analysis of yarn separation type sewing damage on continuous filament fabrics
Fabrics with weaves of low interlacing density and smooth yarns such as continuous cuprammonium filaments are often susceptible to sewing damage of cracks perpendicular to the sewing line, seriously influencing the aesthetics of the finished garment. To understand how the important factors such as y...
Gespeichert in:
Veröffentlicht in: | Textile Research Journal 2023-06, Vol.93 (11-12), p.2908-2917 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2917 |
---|---|
container_issue | 11-12 |
container_start_page | 2908 |
container_title | Textile Research Journal |
container_volume | 93 |
creator | Cui, Lina Weng, Chengwu Liu, Gui Huang, Canyi Liu, Fanxizi Zhang, Yinjia Qiu, Yiping Zhang, Chuyang |
description | Fabrics with weaves of low interlacing density and smooth yarns such as continuous cuprammonium filaments are often susceptible to sewing damage of cracks perpendicular to the sewing line, seriously influencing the aesthetics of the finished garment. To understand how the important factors such as yarn modulus, yarn bending stiffness, sewing needle radius, yarn-on yarn-friction, fabric counts and fabric weaves act on the crack length of such a fabric, a micromechanical model is proposed, and the experimental results are compared with the theoretical prediction. Single yarn pull-out tests and single yarn axial compression tests are performed to estimate yarn-on-yarn friction and yarn bending stiffness, respectively. The model indicates that the sewing crack length is positively proportional to the yarn tensile modulus, yarn bending stiffness and the needle radius and is negatively proportional to the fabric count and the inter-yarn friction. The model predicted crack lengths are within the range of the experimental results in warp direction while the predicted value is substantially larger than the observed crack lengths in weft direction due to the high compressibility of the weft yarn, which decreased yarn tension, bending stiffness and increased yarn cover power. For a given fabric, increasing yarn-on-yarn friction and raising yarn compressibility is an effective way to control the crack lengths. |
doi_str_mv | 10.1177/00405175221144239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817967874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_00405175221144239</sage_id><sourcerecordid>2817967874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-96fc45b4826ec68ddedbc44506385fc2ff38636d0a201b10cb99ec5808208e53</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoWEcfwF3AdcckTZN0KYN_MOJm9iVNkzFDm9SkZezbmzKCC3F1ufee78A5ANxitMaY83uEKCoxLwnBmFJSVGcgw5yynHMqzkG2_PNFcAmuYjwghITgIgPHN6uC77X6kM4q2cHet7qzbg-la6H-GnSwvXZj-kgnuznaCL2BswwORj3IIEfrHRznQaf9uICt7OVew3RV3o3WTX6K0NhOLj7QyCZYFa_BhZFd1Dc_cwV2T4-7zUu-fX9-3Txsc0UYHfOKGUXLhgrCtGKibXXbKEpLxApRGkWMKQQrWIskQbjBSDVVpVUpkCBI6LJYgbuT7RD856TjWB_8FFKQWBOBecW44DSp8EmVqogxaFMPKbUMc41RvdRb_6k3MesTE1PYX9f_gW_qq3xJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817967874</pqid></control><display><type>article</type><title>Micromechanical modeling and experimental analysis of yarn separation type sewing damage on continuous filament fabrics</title><source>SAGE Complete A-Z List</source><creator>Cui, Lina ; Weng, Chengwu ; Liu, Gui ; Huang, Canyi ; Liu, Fanxizi ; Zhang, Yinjia ; Qiu, Yiping ; Zhang, Chuyang</creator><creatorcontrib>Cui, Lina ; Weng, Chengwu ; Liu, Gui ; Huang, Canyi ; Liu, Fanxizi ; Zhang, Yinjia ; Qiu, Yiping ; Zhang, Chuyang</creatorcontrib><description>Fabrics with weaves of low interlacing density and smooth yarns such as continuous cuprammonium filaments are often susceptible to sewing damage of cracks perpendicular to the sewing line, seriously influencing the aesthetics of the finished garment. To understand how the important factors such as yarn modulus, yarn bending stiffness, sewing needle radius, yarn-on yarn-friction, fabric counts and fabric weaves act on the crack length of such a fabric, a micromechanical model is proposed, and the experimental results are compared with the theoretical prediction. Single yarn pull-out tests and single yarn axial compression tests are performed to estimate yarn-on-yarn friction and yarn bending stiffness, respectively. The model indicates that the sewing crack length is positively proportional to the yarn tensile modulus, yarn bending stiffness and the needle radius and is negatively proportional to the fabric count and the inter-yarn friction. The model predicted crack lengths are within the range of the experimental results in warp direction while the predicted value is substantially larger than the observed crack lengths in weft direction due to the high compressibility of the weft yarn, which decreased yarn tension, bending stiffness and increased yarn cover power. For a given fabric, increasing yarn-on-yarn friction and raising yarn compressibility is an effective way to control the crack lengths.</description><identifier>ISSN: 0040-5175</identifier><identifier>EISSN: 1746-7748</identifier><identifier>DOI: 10.1177/00405175221144239</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Axial compression ; Compressibility ; Compression ; Compression tests ; Damage ; Fabrics ; Filaments ; Friction ; Modulus of elasticity ; Needles ; Pull out tests ; Sewing ; Stiffness ; Warp ; Weft ; Yarns</subject><ispartof>Textile Research Journal, 2023-06, Vol.93 (11-12), p.2908-2917</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-96fc45b4826ec68ddedbc44506385fc2ff38636d0a201b10cb99ec5808208e53</cites><orcidid>0000-0003-0060-9847 ; 0000-0001-5116-9955 ; 0000-0003-4987-3585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/00405175221144239$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/00405175221144239$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>313,314,776,780,788,21798,27899,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Cui, Lina</creatorcontrib><creatorcontrib>Weng, Chengwu</creatorcontrib><creatorcontrib>Liu, Gui</creatorcontrib><creatorcontrib>Huang, Canyi</creatorcontrib><creatorcontrib>Liu, Fanxizi</creatorcontrib><creatorcontrib>Zhang, Yinjia</creatorcontrib><creatorcontrib>Qiu, Yiping</creatorcontrib><creatorcontrib>Zhang, Chuyang</creatorcontrib><title>Micromechanical modeling and experimental analysis of yarn separation type sewing damage on continuous filament fabrics</title><title>Textile Research Journal</title><description>Fabrics with weaves of low interlacing density and smooth yarns such as continuous cuprammonium filaments are often susceptible to sewing damage of cracks perpendicular to the sewing line, seriously influencing the aesthetics of the finished garment. To understand how the important factors such as yarn modulus, yarn bending stiffness, sewing needle radius, yarn-on yarn-friction, fabric counts and fabric weaves act on the crack length of such a fabric, a micromechanical model is proposed, and the experimental results are compared with the theoretical prediction. Single yarn pull-out tests and single yarn axial compression tests are performed to estimate yarn-on-yarn friction and yarn bending stiffness, respectively. The model indicates that the sewing crack length is positively proportional to the yarn tensile modulus, yarn bending stiffness and the needle radius and is negatively proportional to the fabric count and the inter-yarn friction. The model predicted crack lengths are within the range of the experimental results in warp direction while the predicted value is substantially larger than the observed crack lengths in weft direction due to the high compressibility of the weft yarn, which decreased yarn tension, bending stiffness and increased yarn cover power. For a given fabric, increasing yarn-on-yarn friction and raising yarn compressibility is an effective way to control the crack lengths.</description><subject>Axial compression</subject><subject>Compressibility</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Damage</subject><subject>Fabrics</subject><subject>Filaments</subject><subject>Friction</subject><subject>Modulus of elasticity</subject><subject>Needles</subject><subject>Pull out tests</subject><subject>Sewing</subject><subject>Stiffness</subject><subject>Warp</subject><subject>Weft</subject><subject>Yarns</subject><issn>0040-5175</issn><issn>1746-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoWEcfwF3AdcckTZN0KYN_MOJm9iVNkzFDm9SkZezbmzKCC3F1ufee78A5ANxitMaY83uEKCoxLwnBmFJSVGcgw5yynHMqzkG2_PNFcAmuYjwghITgIgPHN6uC77X6kM4q2cHet7qzbg-la6H-GnSwvXZj-kgnuznaCL2BswwORj3IIEfrHRznQaf9uICt7OVew3RV3o3WTX6K0NhOLj7QyCZYFa_BhZFd1Dc_cwV2T4-7zUu-fX9-3Txsc0UYHfOKGUXLhgrCtGKibXXbKEpLxApRGkWMKQQrWIskQbjBSDVVpVUpkCBI6LJYgbuT7RD856TjWB_8FFKQWBOBecW44DSp8EmVqogxaFMPKbUMc41RvdRb_6k3MesTE1PYX9f_gW_qq3xJ</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Cui, Lina</creator><creator>Weng, Chengwu</creator><creator>Liu, Gui</creator><creator>Huang, Canyi</creator><creator>Liu, Fanxizi</creator><creator>Zhang, Yinjia</creator><creator>Qiu, Yiping</creator><creator>Zhang, Chuyang</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0060-9847</orcidid><orcidid>https://orcid.org/0000-0001-5116-9955</orcidid><orcidid>https://orcid.org/0000-0003-4987-3585</orcidid></search><sort><creationdate>202306</creationdate><title>Micromechanical modeling and experimental analysis of yarn separation type sewing damage on continuous filament fabrics</title><author>Cui, Lina ; Weng, Chengwu ; Liu, Gui ; Huang, Canyi ; Liu, Fanxizi ; Zhang, Yinjia ; Qiu, Yiping ; Zhang, Chuyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-96fc45b4826ec68ddedbc44506385fc2ff38636d0a201b10cb99ec5808208e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Axial compression</topic><topic>Compressibility</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Damage</topic><topic>Fabrics</topic><topic>Filaments</topic><topic>Friction</topic><topic>Modulus of elasticity</topic><topic>Needles</topic><topic>Pull out tests</topic><topic>Sewing</topic><topic>Stiffness</topic><topic>Warp</topic><topic>Weft</topic><topic>Yarns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Lina</creatorcontrib><creatorcontrib>Weng, Chengwu</creatorcontrib><creatorcontrib>Liu, Gui</creatorcontrib><creatorcontrib>Huang, Canyi</creatorcontrib><creatorcontrib>Liu, Fanxizi</creatorcontrib><creatorcontrib>Zhang, Yinjia</creatorcontrib><creatorcontrib>Qiu, Yiping</creatorcontrib><creatorcontrib>Zhang, Chuyang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Textile Research Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Lina</au><au>Weng, Chengwu</au><au>Liu, Gui</au><au>Huang, Canyi</au><au>Liu, Fanxizi</au><au>Zhang, Yinjia</au><au>Qiu, Yiping</au><au>Zhang, Chuyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical modeling and experimental analysis of yarn separation type sewing damage on continuous filament fabrics</atitle><jtitle>Textile Research Journal</jtitle><date>2023-06</date><risdate>2023</risdate><volume>93</volume><issue>11-12</issue><spage>2908</spage><epage>2917</epage><pages>2908-2917</pages><issn>0040-5175</issn><eissn>1746-7748</eissn><abstract>Fabrics with weaves of low interlacing density and smooth yarns such as continuous cuprammonium filaments are often susceptible to sewing damage of cracks perpendicular to the sewing line, seriously influencing the aesthetics of the finished garment. To understand how the important factors such as yarn modulus, yarn bending stiffness, sewing needle radius, yarn-on yarn-friction, fabric counts and fabric weaves act on the crack length of such a fabric, a micromechanical model is proposed, and the experimental results are compared with the theoretical prediction. Single yarn pull-out tests and single yarn axial compression tests are performed to estimate yarn-on-yarn friction and yarn bending stiffness, respectively. The model indicates that the sewing crack length is positively proportional to the yarn tensile modulus, yarn bending stiffness and the needle radius and is negatively proportional to the fabric count and the inter-yarn friction. The model predicted crack lengths are within the range of the experimental results in warp direction while the predicted value is substantially larger than the observed crack lengths in weft direction due to the high compressibility of the weft yarn, which decreased yarn tension, bending stiffness and increased yarn cover power. For a given fabric, increasing yarn-on-yarn friction and raising yarn compressibility is an effective way to control the crack lengths.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/00405175221144239</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0060-9847</orcidid><orcidid>https://orcid.org/0000-0001-5116-9955</orcidid><orcidid>https://orcid.org/0000-0003-4987-3585</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5175 |
ispartof | Textile Research Journal, 2023-06, Vol.93 (11-12), p.2908-2917 |
issn | 0040-5175 1746-7748 |
language | eng |
recordid | cdi_proquest_journals_2817967874 |
source | SAGE Complete A-Z List |
subjects | Axial compression Compressibility Compression Compression tests Damage Fabrics Filaments Friction Modulus of elasticity Needles Pull out tests Sewing Stiffness Warp Weft Yarns |
title | Micromechanical modeling and experimental analysis of yarn separation type sewing damage on continuous filament fabrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20modeling%20and%20experimental%20analysis%20of%20yarn%20separation%20type%20sewing%20damage%20on%20continuous%20filament%20fabrics&rft.jtitle=Textile%20Research%20Journal&rft.au=Cui,%20Lina&rft.date=2023-06&rft.volume=93&rft.issue=11-12&rft.spage=2908&rft.epage=2917&rft.pages=2908-2917&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177/00405175221144239&rft_dat=%3Cproquest_cross%3E2817967874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817967874&rft_id=info:pmid/&rft_sage_id=10.1177_00405175221144239&rfr_iscdi=true |